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Abstract. Let X be a nice variety over a number field k. We characterise in pure “descent-
type” terms some inequivalent obstruction sets refining the inclusion X(Ak)ét,Br ⊂ X(Ak)Br1 .
In the first part, we apply ideas from the proof of X(Ak)ét,Br = X(Ak)Lk by Skorobogatov
and Demarche to new cases, by proving a comparison theorem for obstruction sets. In the
second part, we show that if A ⊂ B ⊂ Lk are such that B ⊂ Ext(A,Uk), then X(Ak)A =
X(Ak)B. This allow us to conclude, among other things, that X(Ak)ét,Br = X(Ak)Rk and
that X(Ak)Sol,Br1 = X(Ak)Solk .

1. Introduction

1.1. General notation and background. In this paper, k will always be a number field and

k a fixed algebraic closure of k. Let Ωk be the set of places of k. If v ∈ Ωk, we denote by kv
the completion of k at v. By a variety X over k, we will mean a reduced, separated scheme of

finite type over k. We say that a variety is nice if it is smooth, projective, and geometrically

integral. If l/k is any field extension, we write Xl for X×Spec(k) Spec(l); when l = k, we simply

write X for X ×Spec(k) Spec(k). Let X be a variety over k. If l is any field containing k, we

denote by

X(l) := HomSpec(k)(Spec(l), X)

the set of l-rational points of X. There is a diagonal embedding X(k) ⊂ X(Ak), where X(Ak)
is the set of adelic points of X and is endowed with the restricted product topology. We remark

that if X is proper (e.g. if X is projective), then X(Ak) =
∏
v∈Ωk

X(kv).

A linear algebraic group over k is an affine variety over k that has an algebraic group law

structure (also defined over k). The reader interested in the theory of linear algebraic groups is

referred to [Bor91], [Hum81], and [Spr98], or, for a more modern approach, to [Mil15]. Given

a linear algebraic group G over k, a k-scheme Y with a G-action µ : Y × G → Y , and a

G-morphism f : Y → X, we say that Y is a (right) G-torsor over X if f is faithfully flat and if

the morphism Y ×G→ Y ×X Y given by (y, g) 7→ (y, µ(y, g)) is an isomorphism.

Let Lk := {G : G is a linear algebraic group over k}/ ∼, where G1 ∼ G2 if and only if G1

is k-isomorphic to G2 as algebraic k-groups. If S ⊂ Lk, we write “(f, Y,G) ∈ S(X)” to mean

“f : Y → X is a G-torsor over X, with G ∈ S”; when the emphasis on f is not needed, we

just write “(Y,G)” instead of “(f, Y,G)”. The pointed set H1(X,G) := Ȟ1
fppf(X,G), which is a

group whenever G is abelian, classifies G-torsors over X up to k-isomorphism ([Sko01], §2.2);

we usually denote by [Y ] the k-isomorphism class in H1(X,G) of the G-torsor f : Y → X.

Given a G-torsor f : Y → X over X and a 1-cocycle τ ∈ Z1(k,G), we can twist Y by τ : we

can construct a Gτ -torsor f τ : Y τ → X over X, where Gτ and Y τ are “twisted” versions of G

and Y (see Chapter 2 of [Sko01] for more details); we remark that, up to k-isomorphism, this
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construction only depends on the class [τ ] ∈ H1(k,G). For more on the theory of torsors, we

refer the reader to Chapter 2 of [Sko01].

For any (f, Y,G) ∈ S(X), we write X(Ak)f :=
⋃

[τ ]∈H1(k,G) f
τ (Y τ (Ak)), and for any S ⊂ Lk,

we write

X(Ak)S :=
⋂
G∈S

⋂
[Y ]∈H1(X,G)

X(Ak)f .

The Brauer group functor Br : Schopk → Ab is given by Y 7→ Ȟ2
ét(Y,Gm), and the Brauer group

of X is simply Br(X). The algebraic Brauer group of X is given by Br1(X) := ker(Br(X) →
Br(X)), and one can check that Br1 : Schopk → Ab is a subfunctor of Br. Recall that the Brauer-

Manin pairing 〈−,−〉BM : X(Ak) × Br(X) → Q/Z is defined by ((xv), α) 7→
∑

v∈Ωk
invvα(xv),

where invv : Brkv → Q/Z, for v ∈ Ωk, is the invariant map coming from local class field theory.

The Brauer-Manin set is then given by

X(Ak)Br :=
⋂

α∈Br(X)

{(xv) ∈ X(Ak) : 〈(xv), α〉BM = 0}.

We define the algebraic Brauer-Manin set X(Ak)Br1 similarly, by taking the intersection over

α ∈ Br1(X) instead. We have that X(k) ⊂ X(Ak)Br ⊂ X(Ak)Br1 ⊂ X(Ak), where the first

inclusion follows from global class field theory and the continuity of 〈−, α〉BM : X(Ak)→ Q/Z
for each α ∈ BrX.

More generally, let O : Schoppk → Sets be any functor from the opposite category of schemes

over k to the category of sets. Let W ∈ Schk. For each α ∈ O(W ), there is a commutative

diagram

W (k) W (Ak)

O(k) O(Ak),

evα evα

where the horizontal maps are the diagonal maps and where the vertical maps are the evaluation

maps (cf. [Poo, §8.1] for more details). We set

W (Ak)O :=
⋂

α∈O(W )

{(wv) ∈W (Ak) : evα((wv)) ∈ Im(O(k)→ O(Ak))}.

Hence, for any subset S ⊂ Lk, we can define

(1.1) X(Ak)S,O :=
⋂
G∈S

⋂
[Y ]∈H1(X,G)

⋃
[τ ]∈H1(k,G)

f τ (Y τ (Ak)O).

Let Fk ⊂ Lk be the set of finite algebraic groups over k (up to k-isomorphisms). Following

the refinements studied in [Sto07], we consider the chain of inclusions FAb
k ⊂ FSol

k ⊂ Fk,
where FAb

k and FSol
k are, respectively, the subsets of commutative and solvable elements of

Fk. By taking S = Fk and O = Br or O = Br1 in (1.1), we get, respectively, the étale-Brauer

set, usually denoted by X(Ak)ét,Br, and the algebraic étale-Brauer set, denoted by X(Ak)ét,Br1 .

Similarly, by taking S = FSol
k or S = FAb

k and O = Br, we obtain sets that we will denote by

X(Ak)Sol,Br and X(Ak)Ab,Br, respectively; by taking S = FSol
k or S = FAb

k and O = Br1, we

obtain sets that we will denote by X(Ak)Sol,Br1 and X(Ak)Ab,Br1 , respectively.
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1.2. Motivation. Let k be a number field. In general, a family {Xω} of nice varieties over

k can satisfy interesting arithmetic properties depending on the interplay between the set of

adelic points X(Ak) and the set of rational points X(k), for all X ∈ {Xω}. For example, we say

that {Xω} satisfies the Hasse principle if X(Ak) 6= ∅ implies that X(k) 6= ∅, for all X ∈ {Xω};
we remark that the opposite implication is clear, as we always have X(k) ⊂ X(Ak). Another

example, if one is more interested in density properties, is the following: we say that {Xω}
satisfies weak approximation if X(k) 6= ∅ and X(k) = X(Ak), for all X ∈ {Xω}.

Often, however, some of these arithmetic properties fail to hold, since X(Ak) is, in some

sense, too big to detect whichever feature we are looking for. (To give an idea, it is common

to have X(Ak) 6= ∅ but X(k) = ∅ − a clear failure of the Hasse principle).

When this happens, we can try to refine X(Ak) by cutting out obstruction sets X(Ak)O ⊂
X(Ak) in a suitable way, where “suitable” depends on the context. For example, if we are

considering the Hasse principle, we need the inclusion X(k) ⊂ X(Ak)O to hold; we then say

that there is an O-obstruction to the Hasse principle if X(Ak) 6= ∅ and X(Ak)O = ∅, and that

the O-principle holds if X(Ak)O 6= ∅ implies that X(k) 6= ∅ (i.e. if the Hasse principle holds

with “X(Ak)” replaced by “X(Ak)O”). Similarly, if we are interested in weak approximation,

we want X(k) ⊂ X(Ak)O; we then say that there is an O-obstruction to weak approximation if

X(Ak)O 6= X(Ak), and that the O-weak approximation holds if X(k) 6= ∅ and X(k) = X(Ak)O

(assuming X(Ak)O = X(Ak)O).

Obstruction sets are thus useful objects to study, as they help us measuring how far varieties

are from satisfying interesting arithmetic properties concerning rational points. The general

study of these objects took off in the 1970’s with the work of Manin ([Man71]), and is still

a very active area of research in arithmetic geometry − see, for example, [Har96], [Sko99],

[Poo10], [HS13] for some more recent developments.

There are two different, somewhat competing, approaches in defining obstruction sets: we

can either make use of the Brauer group, as is the case for e.g. X(Ak)ét,Br, or use the more clas-

sical “pure” descent on torsors under linear algebraic groups (as is the case for e.g. X(Ak)Lk),

as introduced by Colliot-Thélène and Sansuc in [CTS87]. An interesting task, then, is to try

to reconcile these different approaches, that is, to provide a “translation” between obstruction

sets defined in a “Brauer-type” language and obstruction sets defined in a “descent-type” lan-

guage. There are some important results in the literature in this direction, whenever X is a

nice variety over a number field k: Skorobogatov has shown that X(Ak)Br1 = X(Ak)Mk , where

Mk ⊂ Lk is the set of (k-isomorphism classes of) linear algebraic groups of multiplicative type

over k (see [Sko99], Theorem 3; a less general result, requiring PicX to be torsion-free, had been

proven by Colliot-Thélène and Sansuc in [CTS87]); a result by Harari (cf. [Har02], Théorème

2 (ii)), together with a result of Gabber (cf. [dJ]) and Proposition 5.3.4 in [Sko01], implies

that X(Ak)Br = X(Ak)Ck , where Ck ⊂ Lk is the set of (k-isomorphism classes of) connected

linear algebraic groups over k; the articles by Demarche [Dem09] and Skorobogatov [Sko09]

show that X(Ak)ét,Br = X(Ak)Lk .

Now, any linear algebraic group can be decomposed into simpler building blocks: finite étale

algebraic groups, connected linear algebraic groups, reductive linear algebraic groups, solvable

linear algebraic groups, semisimple linear algebraic groups, linear algebraic tori, and unipotent

linear algebraic groups. A natural question, then, is:
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Question 1.1. If S ⊂ Lk is the set of any of the above building blocks, what is (if it exists)

the translation of X(Ak)S in “Brauer-type” terms?

Symmetrically, one can also ask:

Question 1.2. Given any natural enough Brauer-type obstruction set (such as, for example,

X(Ak)Br, X(Ak)ét,Br, X(Ak)Sol,Br1 , and so on), what is (if it exists) its translation in pure

“descent-type” terms?

The above mentioned results answer these questions for all linear algebraic groups of mul-

tiplicative type (symmetrically, for the algebraic Brauer-Manin set), for all connected linear

algebraic groups (symmetrically, for the Brauer-Manin set), and for all linear algebraic groups

(symmetrically, for the étale-Brauer set). The aim of this article is to answer Questions 1.1

and 1.2 in some other cases: for unipotent, reductive, and solvable linear algebraic groups, and

for the Brauer-type obstruction sets X(Ak)Sol,Br, X(Ak)ét,Br1 , and X(Ak)Sol,Br1 .

1.3. Main results and structure of the paper. In §2, we give some properties of linear

algebraic groups. In §§3, 4, we follow closely techniques and ideas from [Dem09], [Sko09], and

[Sto07], to prove, under certain conditions, a comparison theorem for obstruction sets.

Theorem (Theorem 3.1). Let X be a nice variety over k. Let O : Schoppk → Sets be any

functor such that X(Ak)O ⊂ X(Ak)Br1, and let Sk ⊂ Lk be subject to some conditions. Then

X(Ak)Fk,O = X(Ak)Ext(Fk,Sk),

where Ext(Fk,Sk) ⊂ Lk is the subset of linear algebraic groups over k that can be written as

extensions of elements in Fk by elements in Sk (up to k-isomorphisms). The same result holds

if we replace “Fk” by “FSol
k ”.

In §5, by applying Theorem 3.1, we are able to translate the natural “Brauer-type” obstruc-

tion sets X(Ak)Sol,Br, X(Ak)ét,Br1 , and X(Ak)Sol,Br1 in a pure “descent-type” language − see,

respectively, Theorem 5.1, Corollary 5.10, and Corollary 5.10.

Let Uk ⊂ Lk be the set of (k-isomorphism classes of) unipotent linear algebraic groups over

k. In §6, we prove the following.

Theorem (Theorem 6.1). Let X be a smooth, proper, geometrically integral variety over k. Let

A ⊂ B ⊂ Lk be such that B ⊂ Ext(A,Uk). (Here, Ext(A,Uk) ⊂ Lk is the set of (k-isomorphism

classes of) linear algebraic groups over k that can be written as extensions of elements in A by

elements in Uk.) Then X(Ak)A = X(Ak)B.

From Theorem 6.1, we then get a series of corollaries (cf. Corollaries 6.8, 6.10, 6.12, 6.14,

6.15, 6.17). In particular,

(1) X(Ak)Uk = X(Ak) (Corollary 6.8);

(2) X(Ak)Lk = X(Ak)Rk (Corollary 6.10). Here, Rk ⊂ Lk is the set of (k-isomorphism

classes of) of reductive linear algebraic groups over k;

(3) X(Ak)Sol,Br1 = X(Ak)Solk (Corollary 6.14). Here, Solk ⊂ Lk is the set of (k-isomorphism

classes of) of solvable linear algebraic groups over k.

Finally, in §7, we summarise the relations between the different obstruction sets considered

in this paper.
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2. Extensions of linear algebraic groups

Linear algebraic groups play an essential role in this paper, so we start by recalling some

of their basic properties. Although some of these properties hold for more general fields,

throughout this section we will just consider linear algebraic groups over fields of characteristic

0; this will spare us of many technical complications (not needed in this paper anyway).

Let K be a field of characteristic 0.

Definition 2.1. An (algebraic) K-group is a group object in the category AlgVarK of algebraic

varieties over K. A linear algebraic K-group is a group object in the category AffVarK of affine

varieties over K. If G1, G2 are algebraic K-groups, a map φ : G1 → G2 is morphism of algebraic

K-groups if it is a K-morphism of K-varieties which is also a homomorphism of groups.

Remark 2.2. In characteristic 0, any algebraic group is always smooth (see [Car62]). Smooth

affine algebraic groups are the same as closed algebraic subgroups of GLn, for some n − hence

the name “linear algebraic groups”.

Example 2.3. The multiplicative group Gm,K = (Spec(K[x, x−1]), ·) and the additive group

Ga,K = (Spec(K[x]),+) are linear algebraic K-groups that can be represented, respectively, as{(
x 0
0 x−1

)
: x ∈ K×

}
⊂ GL2(K) and

{(
1 x
0 1

)
: x ∈ K

}
⊂ GL2(K).

2.1. Closure properties of linear algebraic groups. For convenience, we remind the reader

of some definitions and, without proofs, of some “closure” properties of algebraic groups over

K.

(C1) Let G be a K-group. By a (closed) K-subgroup H of G, written H ≤K G, we mean a

K-group H (with multiplication and identity induced from those of G) that is also a

K-closed subvariety of G (with respect to the Zariski topology).

(C2) Let 1→ A→ B → C → 1 be a short exact sequence of algebraic K-groups. Then B is

affine if and only if A and C are affine ([DGA], VI.B, 9.2(viii)). Hence, since we are in

characteristic 0, B is linear if and only if A and C are linear.

(C3) If G is an algebraic K-group and H is a normal (closed) K-subgroup of G, then G/H

exists and is an algebraic K-group ([DGA], VI.A, Théorèmes 3.2 and 5.2), which is

linear if G is linear.

(C4) Let G be a K-group. We denote by G0 the connected component of the identity of G,

i.e. the unique connected component of G that contains the identity. This is a (closed)

normal K-subgroup of G of finite index, whose cosets are the connected (equivalently,

irreducible) components of G (see [Bor91], (1.2)). Note that if G is a linear algebraic

K-group, then so is G0.

(C5) Let G be a K-group. Then the radical R(G) of G is the largest connected solvable

normal (closed) K-subgroup of G; the set Ru(G) of all unipotent elements of R(G)
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is the unipotent radical of G, which is the largest connected unipotent normal closed

K-subgroup of G. Note that R(G) = R(G0) and Ru(G) = Ru(G0).

(C6) Let G and G′ be K-groups and let φ : G → G′ be a morphism of K-groups. Then

φ(G) is a (closed) normal K-subgroup of G′ ([Spr98], Proposition 2.2.5) and, similarly,

ker(φ) is a (closed) K-subgroup of G.

(C7) If G is a connected linear algebraic K-group, then its commutator DG is a connected

linear K-subgroup of G ([Spr98], Corollary 2.2.8).

Fix an algebraic closure K of K.

Definition 2.4. A linear algebraic group G over K is

(D1) finite if G(K) is finite (this definition uses the fact that charK = 0).

(D2) connected if its underlying topological space is connected, with respect to the Zariski

topology.

(D3) solvable if its derived series G ⊃ DG ⊃ D2G ⊃ ... has DiG trivial for some i ∈ Z≥0.

(D4) reductive if its geometric unipotent radical is trivial, i.e. if Ru(G0
K

) = Ru(G0)K is

trivial. Note that we don’t require G to be connected.

(D5) semisimple if its geometric radical is trivial, i.e. if R(G0
K

) = R(G0)K is trivial. Again,

note that we don’t require G to be connected.

(D6) of multiplicative type if GK is K-isomorphic to a closed subgroup of GN
m,K

, for some

N ∈ Z≥0.

(D7) a torus if GK is K-isomorphic to GN
m,K

, for some N ∈ Z≥0.

(D8) unipotent if GK admits a (finite) composition series over K such that each successive

quotient is isomorphic (over K) to a closed subgroup of Ga,K ; equivalently (cf. [DGA]

XVII, Théorème 3.5), if G admits a (finite) central series over K such that each suc-

cessive quotient is isomorphic (over K) to Ga (here we use the fact that charK = 0);

equivalently, if G = Ru(G). In particular, if G is unipotent, then G is connected. Note

that “being unipotent” is a geometric property, i.e. is stable under base-extending K

(cf. [DGA] XVII, Proposition 2.2(i)).

We define the following sets:

LK = {G : G is a linear algebraic K-group}/ ∼,
FK = {G ∈ LK : G is finite},
CK = {G ∈ LK : G is connected},
AbK = {G ∈ LK : G is commutative},
SolK = {G ∈ LK : G is solvable},
MK = {G ∈ LK : G is of multiplicative type},
TK = {G ∈ LK : G is a torus},
RK = {G ∈ LK : G is reductive},
RRK = {G ∈ RK : H ≤K G⇒ H ∈ RK},
UK = {G ∈ LK : G is unipotent},

where G1 ∼ G2 if and only if G1 is k-isomorphic to G2 as a k-group.

Notation. For any S ⊂ LK , we write SSol for S ∩ SolK , SAb for S ∩ AbK , and so on.

Recall that, if A,B, and G are linear algebraic groups over K, we say that G is an extension

of A by B if G fits into a short exact sequence 1 → B → G → A → 1 of linear algebraic

K-groups.
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Definition 2.5. Let A,B ⊂ LK . We define

Ext(A,B) = {G ∈ LK : G is an extension of A by B, for some A ∈ A and B ∈ B}.

Remark 2.6. If G ∈ Ext(A,B), then, by definition, G fits into a short exact sequence 1 →
B → G → A → 1, for some B ∈ B and A ∈ A. If (f, Y,G) ∈ Ext(A,B)(X), then f naturally

decomposes into (Y,B) ∈ B(Z) and (Z,A) ∈ A(X), where Z := Y/B is the push-forward of

f : Y → X along the morphism G→ A (see §2.2 of [Sko01] for more details).

It might be worth mentioning that some of the sets defined above can be recast in terms of

extensions of linear algebraic groups. For example, it is easy to check that LK = Ext(FK , CK);

perhaps less obviously, RRK = Ext(FK , TK) (cf. Lemma 5.9).

2.2. Some properties of extensions. We describe here some properties of Ext(A,B) for the

special cases when A = FK , FSol
K , or FAb

K .

In general, we say that some S ⊂ LK is closed

(E1) under taking direct products if S1, S2 ∈ S implies that S1 ×K S2 ∈ S;

(E2) under taking (closed) K-subgroups if S ∈ S and H ≤K S imply that H ∈ S;

(E3) under taking K-twists if, whenever S ∈ S and S′ ∈ LK are such that S′
K
∼= SK as a

K-groups, then we have that S′ ∈ S;

(E4) under “base changing/restricting” if S ∈ S and L/K a finite field extension imply that

RL/K(SL) ∈ S, where RL/K denotes the Weil restriction.

Remark 2.7. The sets FK , FSol
K , and FAb

K satisfy all the properties above. Note, however,

that FAb
K is not closed under extensions, while both FK and FSol

K are.

Lemma 2.8. If B ⊂ LK is closed under taking closed K-subgroups, then so is Ext(FK ,B).

The same is true with “FK” replaced by “FSol
K ” or by “FAb

K ”.

Proof. Let G ∈ Ext(FK ,B), and say it fits into the short exact sequence 1→ B
β−→ G

α−→ A→ 1,

for some A ∈ FK and B ∈ B. Let H ≤K G. Consider the short exact sequence

1→ β(B) ∩H β′
−→ H

α′
−→ α(H)→ 1,

where α′ and β′ are the obvious maps. This is indeed exact at the ends, and to see exactness at

the middle, just notice that β(B)∩H ∼= ker(α)∩H ∼= ker(α′). Since α is a K-homomorphism,

it follows that α(H) ≤K A, and hence that α(H) ∈ FK . Moreover, by assumption, B is closed

under taking K-subgroups, meaning that β(B) ∩H ∈ B. Hence, H ∈ Ext(FK ,B). The same

proof works also if we replace “FK” by “FSol
K ” or by “FAb

K ”. �

Lemma 2.9. If B ⊂ LK is closed under taking direct products, then so is Ext(FK ,B). The

same is true with “FK” replaced by “FSol
K ” or by “FAb

K ”.

Proof. Easy. �

Lemma 2.10. Suppose Ext(FK ,B) is closed under taking direct products and closed K-subgroups.

Let G,G′, G′′ ∈ Ext(FK ,B), and suppose φ′ : G′ → G and φ′′ : G′′ → G are morphisms of

algebraic K-groups defined. Then G′ ×G G′′ ∈ Ext(FK ,B), where the fibred product is with

respect to φ and φ′. The same is true with “FK” replaced by “FSol
K ” or by “FAb

K ”.
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Proof. This follows from the assumption that Ext(FK ,B) is closed under taking (closed) K-

subgroups and direct products, since G′ ×G G′′ ∼= ker(φ : G′ ×K G′′ → G) with φ((g′, g′′)) =

φ′(g′)φ′′−1(g′′) by Yoneda’s lemma, and so G′×GG′′ is a closed K-subgroup of G′×K G′′. The

same proof works also if we replace “FK” by “FSol
K ” or by “FAb

K ”. �

Let L/K be a finite field extension. Recall that, for any quasi-projective L-scheme W , the

Weil restriction RL/K(W ) exists and represents the contravariant functor T 7→W (T×KL) from

SchK to Set. We list here some of the properties of RL/K(see [Vos11], Chap 1, §3.12).

(W1) If X is a K-variety, there is a functorial bijection

HomK(X,RL/K(X ×K L)) ∼= HomL(X ×K L,X ×K L).

This gives, by considering idX×KL : X ×K L → X ×K L on the right-hand side, the

canonical embedding ι : X → RL/K(X ×K L).

(W2) If X is affine (respectively, smooth) variety over L, then RL/K(X) is also affine (respec-

tively, smooth). If G is an L-group, then RL/K(G) is a K-group. Moreover, RL/K(G)

is connected if and only if G is connected, and if G is commutative, then so is RL/K(G).

(W3) Given a short exact sequence 1→ G′ → G→ G′′ → 1 of algebraic L-groups,

1→ RL/K(G′)→ RL/K(G)→ RL/K(G′′)→ 1

is a short exact sequence of algebraic K-groups. In other words, the functor RL/K(−)

preserves short exactness.

Lemma 2.11. If B ⊂ LK is closed under “base changing/restricting” and under taking (closed)

K-subgroups, then Ext(FK ,B) is closed under K-twists. The same is true with “FK” replaced

by “FSol
K ” or by “FAb

K ”.

Proof. We need to show that if G ∈ Ext(FK ,B) and G̃ ∈ LK is such that G̃K
∼= GK (over K),

then G̃ ∈ Ext(FK ,B). Consider the short exact sequence

1→ B
b−→ G

a−→ A→ 1.

Let G̃ be a K-twist of G, so that G̃K
∼= GK over K. In particular, there is a finite field

extension L/K such that GL ∼= G̃L. Let φ : GL
∼−→ G̃L be an L-isomorphism of these L-groups,

with ϕ : G̃L
∼−→ GL as inverse. Since group schemes represent functors of fppf group sheaves,

short exact sequences of group schemes are stable under base change. This gives a short exact

sequence 1 → BL
bL−→ GL

aL−→ AL → 1, which, using the L-isomorphisms φ and ϕ above, in

turn gives the short exact sequence (as L-groups)

(2.1) 1→ BL
φ◦bL−−−→ G̃L

aL◦ϕ−−−→ AL → 1.

Applying RL/K(−) to (2.1) gives a short exact sequence of algebraic K-groups

1→ RL/K(BL)
β−→ RL/K(G̃L)

α−→ RL/K(AL)→ 1.

Now, by assumption RL/K(BL) ∈ B, and clearly RL/K(AL) ∈ FK . Moreover, ι : G̃ →
RL/K(G̃L) is an embedding. Hence, we can consider the short exact sequence

1→ RL/K(BL) ∩ ι(G̃)
β′
−→ ι(G̃) ∼= G̃

α′
−→ α(ι(G̃))→ 1,
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where α′ and β′ are the obvious maps. Since B is closed under taking (closed) K-subgroups,

and since α(ι(G̃)) ≤K RL/K(AL), meaning that α(ι(G̃)) ∈ FK , we have that G̃ ∈ Ext(FK ,B),

as required. The same proof works also if we replace “FK” by “FSol
K ” or by “FAb

K ”. �

Let G be an abstract group. By the constant K-group G̃ induced by G we mean the disjoint

union of copies of SpecK, indexed by G, together with the obvious group structure induced

by G. If W is a K-scheme, by a (left) action of the abstract group G on W we mean a

group homomorphism φ : G → AutK(W ). One can show that the group homomorphisms

φ : G → AutK(W ) defining an action of G on W correspond precisely to the K-morphisms

φ̃ : G̃ × W → W defining an action of G̃ on W ; we will use these two notions of “action”

interchangeably. For this reason, with abuse of notation, we will denote by “G” both the

abstract group G and the constant K-group induced by G.

Lemma 2.12. Suppose that B ⊂ LK is closed under direct products and that 1 ∈ B. Let

G ∈ Ext(FK ,B). Let F be a finite abstract group and, by abusing notation, let F ∈ FK be

the induced constant finite K-group. Let F act on G|F | (the direct product of G with itself |F |
times) by permuting the coordinates, and let φ : F → AutK(G|F |) be the corresponding group

homomorphism coming from this action. Then G|F |oφF ∈ Ext(FK ,B). The same is true with

“FK” replaced by “FSol
K ”.

Proof. Let φ : F → AutK(G|F |) denote the morphism induced by the action of F (with F seen

as a subgroup of the symmetric group S|F |, by Cayley’s theorem). Since G ∈ Ext(FK ,B), we

have that G fits, say, into the short exact sequence

1→ B
b−→ G

a−→ A→ 1,

where B ∈ B and A ∈ FK . By Lemma 2.9, we know that G|F | ∈ Ext(FK ,B) and that it fits

into the exact sequence

1→ B|F |
b|F |:=(b,...,b)−−−−−−−−→ G|F |

a|F |:=(a,...,a)−−−−−−−−→ A|F | → 1,

with A|F | ∈ FK and B|F | ∈ B. Since a|F | : G|F | → A|F | is surjective and its kernel ker(a|F |) =

(ker(a), ..., ker(a)) ∼= B|F | is φ-characteristic (i.e. φ(ker(a|F |)) = ker(a|F |)) as φ just acts by

permuting the coordinates, there is a ϕ : F → AutK(A) making the following diagram commute

A|F |

G|F | G|F |

A|F |
ϕ

a|F | a|F |

φ

In particular, this means that, for any f ∈ F and g ∈ G|F |, we have

(2.2) a|F |(φf (g)) = ϕf (a|F |(g)),

where φf := φ(f) and ϕf := ϕ(f).

Since, by assumption, 1 ∈ B, we have that F is in Ext(FK ,B), as it fits into the short exact

sequence 1→ 1→ F
id−→ F → 1. Now consider the sequence

1→ B|F | oφ 1︸ ︷︷ ︸
∼=B|F |

(b|F |,1)−−−−→ G|F | oφ F
(a|F |,id)−−−−−→ A|F | oϕ F → 1,
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where B|F | oφ 1 ∼= B|F | ∈ B and A|F | oϕ F ∈ FK , since FK is closed under extensions.

Clearly, (b|F |, 1) is a K-group homomorphism. One can check that (a|F |, id) is also a K-group

homomorphism, given our choice of ϕ and (2.2). Finally, it is clear that the sequence is exact,

since the maps come from two short exact sequences. The same proof works also if we replace

“FK” by “FSol
K ”. �

3. Statement of the first result

Let k be a number field and let X be a nice over k. We define

(3.1) X(Ak)Fk,O :=
⋂
F∈Fk

⋂
[Z]∈H1(X,F )

⋃
[τ ]∈H1(k,F )

f τ (Zτ (Ak)O),

where O : Schoppk → Sets be any functor such that X(Ak)O ⊂ X(Ak)Br1 ; the “solvable”

and “abelian” versions of X(Ak)Fk,O are defined by replacing “Fk” by “FSol
k ” and “FAb

k ”,

respectively. We suppose further that there exists a set Sk ⊂ Lk such that the following three

conditions hold.

Condition 1. Sk is contained in Ck, closed under k-twists, and such that, for any nice k-variety

W , we have W (Ak)O ⊂W (Ak)Sk .

Condition 2. For any nice k-variety W ′, we have W ′(Ak)Ext(Fk,Sk) ⊂ W ′(Ak)O. The “solv-

able” and “abelian” versions of this condition are obtained by replacing ”Fk” by “FSol
k ” and

“FAb
k ”, respectively.

Condition 3. Ext(Fk,Sk) is closed under taking closed k-subgroups, under taking k-twists,

under taking direct products, and such that conclusion of Lemma 2.12 (with B = Sk) holds.

The “solvable” and “abelian” versions of this condition are obtained by replacing ”Fk” by

“FSol
k ” and “FAb

k ”, respectively.

The following theorem is then a generalisation of the results in [Dem09] and [Sko09].

Theorem 3.1. Let X be a nice variety over k. Let X(Ak)Fk,O be defined as above, and assume

Conditions 1, 2, and 3 hold. Then

X(Ak)Fk,O = X(Ak)Ext(Fk,Sk).

If we consider the “solvable version” of X(Ak)Fk,O, and the “solvable versions” of Conditions

1, 2, and 3 hold, then the result is also true if we replace “Fk” by “FSol
k ”.

Remark 3.2. Notice that Fk ⊂ Ext(Fk,Sk) and Sk ⊂ Ext(Fk,Sk), and the same holds if we

replace “Fk” by “FSol
k ”.

4. Proof of Theorem 3.1

In this section, we give a proof of Theorem 3.1. We will prove the “standard version” of the

theorem, but for the “solvable version”, the proof is identical, modulo replacing “Fk” by “FSol
k ”

when necessary. Most of the results in this section are just restatements of results in [Dem09]

and [Sko09]; we often try to sketch the proofs of these results, for the reader’s convenience. We

remark, however, that we use a finesse − Proposition 4.14 − not present (and not needed) in

[Dem09] and [Sko09], which gives us flexibility in the applications of Theorem 3.1 (see §5).
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4.1. Proof that X(Ak)Ext(Fk,Sk) ⊃ X(Ak)Fk,O. In this subsection, it suffices to assume that

Sk satisfies Conditions 1 and 3 (without Lemma 2.12).

Lemma 4.1. Let X be a smooth, projective variety over a number field k. Let (f, Z, F ) ∈
Fk(X). Then Z is smooth and projective.

Proof. This follows as f is finite and étale. �

Definition 4.2. Let (Y,G), (Z,H) ∈ Lk(X). An X-torsor morphism f = (φ, ψ) : (Y,G) →
(Z,H) is a pair (φ, ψ) where φ : Y → Z is an X-morphism and ψ : G→ H is a homomorphism,

compatible in the sense that the diagram

X

Y Z

Y ×X GX Z ×X HX

φ× ψ

φ

commutes. We say that the X-torsor morphism f = (φ, ψ) is surjective if φ (equivalently, ψ) is

surjective.

Remark 4.3. If f = (φ, ψ) : (Y,G) → (Z,H) is surjective, then Y → Z is a (kerψ)-torsor

over Z.

Proposition 4.4 ([Dem09] Lemme 3). Let X be a nice variety over a number field k. Let

(Pv) ∈ X(Ak)Fk,O and let (f, Z, F ) ∈ Fk(X). Then there exist:

(i) an F ′ ∈ Fk,

(ii) a (X ′, F ′) ∈ Fk(X) with X ′ geometrically integral,

(iii) a 1-cocycle σ ∈ Z1(k, F ),

(iv) a morphism of X-torsors (φ, ψ) : (X ′, F ′)→ (Zσ, F σ)

such that (Pv) lifts to some (Qv) ∈ X ′(Ak)O.

Proof. The proof is similar as the one in [Dem09], being careful to replace “Br” and “ét,Br”

by “O” and “Fk,O”, respectively. �

The next proposition, which allows us to lift cocycles, is essentially due to Demarche

([Dem09], Proposition 4), with the caveat that, while he requires (Pv) ∈ X(Ak)ét,Br, we take

(Pv) ∈ X(Ak)Fk,O.

Proposition 4.5 (Demarche, [Dem09] Proposition 4). Let X be a nice variety over a number

field k. Let (Pv) ∈ X(Ak)Fk,O and let (f, Y,G) ∈ Lk(X). Let

1→ H → G→ F → 1

be a short exact sequence in Lk, with H ∈ Ck and F ∈ Fk. We denote the pushforward of

f : Y → X under the morphism G → F by (Z,F ) ∈ Fk(X). Let σ ∈ Z1(k, F ) be a cocycle

coming from Proposition 4.4 applied to the torsor Z → X and the point (Pv). Then the class

[σ] ∈ H1(k, F ) lifts to a class [τ ] ∈ H1(k,G).

Remark 4.6. Let H ∈ Ck. Since H contains a k-point (the identity), it is also geometrically

connected (see [Gro65], 4.5.14).
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Proof. In the proof of Proposition 4 in [Dem09], the only place where Demarche uses the fact

that (Pv) ∈ X(Ak)ét,Br is in a passage of the proof of “Le lemme 7 implique la proposition 4”.

In this passage, Demarche wants to prove the existence of some torsor of type λ′. To do so,

he appeals to Corollary 6.1.3 (1) in [Sko01]. Indeed, he knows that (Pv) lifts to some (Qv) ∈
X ′(Ak)Br for some nice X ′; this means in particular that X ′(Ak)Br1 6= ∅. But X ′ is proper and

geometrically integral (and, in particular, k[X ′]∗ = k
∗
), and ∅ 6= X ′(Ak)Br1 =

⋂
λX

′(Ak)Brλ

(see [Sko01] for the definitions). Hence, since X ′(Ak)Brλ′ 6= ∅, the required torsor of type λ′

exists by Corollary 6.1.3 (1) in [Sko01].

In our case, (Pv) ∈ X(Ak)Fk,O. By Proposition 4.4, (Pv) lifts to some (Qv) ∈ X ′(Ak)O for

some nice X ′. Hence, ∅ 6= X ′(Ak)O ⊂ X ′(Ak)Br1 (where the inclusion holds by assumption on

O), and since X ′ is proper and geometrically integral, we can appeal to Corollary 6.1.3 (1) in

[Sko01] as well to conclude that the relevant torsor of type λ′ exists. All the other parts of the

proof of Proposition 4 in [Dem09] are unchanged. �

We have an analogue of Théorème 1 in [Dem09].

Theorem 4.7. Let X be a nice variety over k. Then X(Ak)Fk,O ⊂ X(Ak)Ext(Fk,Sk).

Proof. Let (Pv) ∈ X(Ak)Fk,O. We fix G ∈ Ext(Fk,Sk) and (g, Y,G) ∈ Ext(Fk,Sk)(X). Then

G fits, say, into the short exact sequence 1 → S → G → F → 1, for some F ∈ Fk and

S ∈ Sk. By pushing forward g along G → F , we can decompose Y → X into (Y, S) ∈ Sk(Z)

and (Z,F ) ∈ Fk(X). By applying Proposition 4.4 to (Z,F ) and (Pv), we get an F ′ ∈ Fk, an

(X ′, F ′) ∈ Fk(X) with X ′ geometrically integral, a 1-cocycle ρ ∈ Z1(k, F ), and an X-torsor

morphism φ : X ′ → Z ′ such that (Pv) lifts to a point (Qv) ∈ X ′(Ak)O. Hence, we have the

commutative triangle

X

ZρX ′

fρ F ρ
F ′

f ′

φ

We now apply Proposition 4.5 to the X-torsor (g, Y,G), the short exact sequence 1→ S →
G → F → 1 (note here that S ∈ Ck, as Sk ⊂ Ck by Condition 1), and (Pv) ∈ X(Ak)Fk,O
to conclude that [ρ] ∈ H1(k, F ) lifts to some [µ] ∈ H1(k,G). It follows that the Gµ-torsor

gµ : Y µ → X can be decomposed naturally into the Sµ-torsor Y µ → Zρ and the F ρ-torsor

Zρ → X. Now consider the fibred product Y µ ×Zρ X ′. This is naturally a Sµ-torsor over X ′,

and we remark that (p2, Y
µ×ZρX ′, Sµ) ∈ Sk(X ′) as Sk is closed under k-twists. The following

diagram summarises the constructions done so far:

X

ZρX ′

Y µY µ ×Zρ X ′

fρ F ρ
F ′

f ′

φ

Sµ

p1

p2 Sµ

Gµgµ
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Note that, since X is smooth and projective and X ′ → X is finite and étale, then X ′ is

also smooth and projective; moreover, since X ′ is geometrically connected, it follows that X ′

is nice. Hence, we can use Condition 1 to deduce that

X ′(Ak)O ⊂
⋃

[ν]∈H1(k,Sµ)

pν2((Y µ ×Zρ X ′)ν(Ak)).

In particular, there is some ν ∈ Z1(k, Sµ) such that (Qv) lifts to (Rv) ∈ (Y µ ×Zρ X ′)ν(Ak).
Then, arguing in an identical manner as in Théorème 1 in [Dem09], we can conclude that

(Pv) ∈
⋃

[τ ]∈H1(k,G)

gτ (Y τ (Ak)).

Since (Pv) ∈ X(Ak)Fk,O, G ∈ Ext(Fk,Sk), and (g, Y,G) were arbitrary, we get that

X(Ak)Fk,O ⊂ X(Ak)Ext(Fk,Sk),

as required. �

Remark 4.8. In this section, we only use Condition 1 and Condition 3 without Lemma 2.12,

and these hold if we replace “Fk” with “FAb
k ”. Hence, we can also conclude that X(Ak)F

Ab
k ,O ⊂

X(Ak)Ext(FAb
k ,Sk).

4.2. Proof that X(Ak)Ext(Fk,Sk) ⊂ X(Ak)Fk,O. In this subsection, we assume that Sk satisfies

Conditions 1, 2, 3.

Proposition 4.9 (Based on [Sto07], Proposition 5.17). Let X be a smooth, proper variety over

a number field k. Let (Y, F ) ∈ Fk(X). For any (Pv) ∈ X(Ak)Ext(Fk,Sk), there exists a twist

(Y ′, F ′) ∈ Fk(X) of (Y, F ) with the following property. For any surjective X-torsor morphism

(φ, ψ) : (Z,G) → (Y ′, F ′), where (Z,G) ∈ Ext(Fk,Sk)(X), there exists a twist Z ′ → Y ′ of

(Z, kerψ) ∈ Ext(Fk,Sk)(Y ′) such that (Pv) lifts to a point in Z ′(Ak).

Proof of Proposition 4.9. We follow closely the first part of the proof of Proposition 5.17 in

[Sto07], modifying it accordingly when needed.

Let P ∈ X(Ak)Ext(Fk,Sk). Let (Y, F ) ∈ Fk(X). Since X is proper, by ([Sko01], Proposition

5.3.2) there are only finitely many twists (Y σ, F σ) of (Y, F ) such that Y σ(Ak) 6= ∅. Moreover,

since P ∈ X(Ak)Ext(Fk,Sk) and Fk ⊂ Ext(Fk,Sk), we have that P lifts to some point in some

Y σ(A). Let Y1, ..., Ys be the finitely many twists of (Y, F ) such that P lifts to some adelic point

in them.

Let τ(j) ⊂ {1, ..., s} be the set of indices i such that, for every (Z,G) ∈ Ext(Fk,Sk)(X)

mapping to Yj → X, there is a twist Zξ that lifts P and induces a twist of Yj that is isomorphic

to Yi. Following Stoll, one can show that

(i) τ(j) 6= ∅ (using Condition 3);

(ii) if i ∈ τ(j), then τ(i) ⊂ τ(j);

(iii) for some j, we have j ∈ τ(j).

We can take Y ′ to be Yj , where j ∈ τ(j). �

Remark 4.10. For the above proof to make sense, we need Fk ⊂ Ext(Fk,Sk).

Lemma 4.11 (Skorobogatov, [Sko09] Corollary 2.7). Let Y be a proper variety over a number

field k, and let (g, Z,G) ∈ Lk(Y ). Then the set Y (Ak)g is closed in Y (Ak). �
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The following proposition is essentially due to Skorobogatov.

Proposition 4.12 (Skorobogatov, [Sko09] Proposition 2.3). Let X be a variety over a number

field k. Let (Y, F ) ∈ Fk(X) and (Z,G) ∈ Ext(Fk,Sk)(Y ). Then there exist a (V,G′) ∈
Ext(Fk,Sk)(X) and a surjective X-torsor morphism (θ, ψ) : (V,G′) → (Y, F ) such that there

is a surjective Y -torsor morphism (Θ,Ψ) : (V, kerψ)→ (Z,G) with ker Ψ ∈ Ext(Fk,Sk).

Proof. As in the proof of Proposition 2.3 of [Sko09], let V := RY/X(Z)×X Y , where RY/X(Z)

is the Weil restriction (which exists since Y → X is finite étale, cf. §7.6 of [BLR90]), and

let θ : V → Y be the second projection. Consider the group Gm oρ F (k), where m = |F (k)|
and where ρ is the action of the constant group F (k) on Gm by permutation of coordinates.

Since G ∈ Ext(Fk,Sk), by Condition 3 we have also that Gm ∈ Ext(Fk,Sk). Moreover, since

F (k) ∈ Fk is a constant group acting on Gm by permuting the coordinates, and since we

are assuming Condition 3, by Lemma 2.12 we know that Gm oρ F (k) ∈ Ext(Fk,Sk). Now

consider the k-twist of Gm oρ F (k) given by G′ := RF/Speck(GF ) oφ F , where φ is the action

induced by ρ (and where RF/Speck(GF ) exists, again cf. §7.6 of [BLR90]). Since, by Condition

3, Ext(Fk,Sk) is closed under taking k-twists, it follows that G′ ∈ Ext(Fk,Sk). Following the

proof of Proposition 2.3 of [Sko09], one can show that V → X is a G′-torsor, that θ and the

natural projection ψ : G′ → F together give a surjective X-torsor morphism (θ, ψ) : (V,G′)→
(Y, F ), and that there exists a surjective Y -torsor morphism (Θ,Ψ) : (V, kerψ) → (Z,G).

Moreover, since Ext(Fk,Sk) is closed under taking (closed) k-subgroups (by Condition 3), we

also have that kerψ ∈ Ext(Fk,Sk). �

We can now prove that X(Ak)Ext(Fk,Sk) is “well-behaved” with respect to torsors under

groups in Fk. Our proof is almost verbatim that of Theorem 1.1 in [Sko09].

Theorem 4.13. For any F ∈ Fk and any [Z] ∈ H1(X,F ), we have

X(Ak)Ext(Fk,Sk) =
⋃

[τ ]∈H1(k,F )

f τ (Zτ (Ak)Ext(Fk,Sk)).

Proof. The inclusion “⊃” follows by pulling back torsors. Indeed, suppose that

(Pv) ∈
⋃

[τ ]∈H1(k,F )

f τ (Zτ (Ak)Ext(Fk,Sk)),

say (Pv) = f τ ((Qv)) for some (Qv) ∈ Zτ (Ak)Ext(Fk,Sk) and some [τ ] ∈ H1(k, F ). Then,

if (g, Y,G) ∈ Ext(Fk,Sk)(X), we obtain the torsor (p1, Z
τ ×X Y,G) ∈ Ext(Fk,Sk)(Zτ ) by

pulling back (g, Y,G) ∈ Ext(Fk,Sk)(X) along f τ : Zτ → X. Since (Qv) ∈ Zτ (Ak)Ext(Fk,Sk)

and G ∈ Ext(Fk,Sk), there is some [µ] ∈ H1(k,G) such that (Qv) lifts to some (Rv) ∈
(Zτ ×X Y )µ(Ak) = (Zτ ×X Y µ)(Ak). By the commutativity of obvious pullback diagram, we

conclude that (Pv) ∈ gµ(Y µ(Ak)). Since (g, Y,G) ∈ Ext(Fk,Sk)(X) was arbitrary, it follows

that (Pv) ∈ X(Ak)Ext(Fk,Sk).

For the other inclusion, let (Pv) ∈ X(Ak)Ext(Fk,Sk). Let (f̃ , Z̃, F̃ ) ∈ Fk(X) be the twist of

(f, Z, F ) ∈ Fk(X) coming from Proposition 4.9. It is clear that we only need to show that (Pv)

lifts to a point in Z̃(Ak)Ext(Fk,Sk). Suppose not, for a contradiction. Then

f̃−1((Pv)) ⊂
⋃

(g′,W ′,G′)∈Ext(Fk,Sk)(Z̃)

Z̃(Ak)\Z̃(Ak)g
′
,
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where the cover on the right hand side is an open cover since each Z̃(Ak)g
′

is closed in Z̃(Ak),
by Lemma 4.11. Using compactness, we have

f̃−1((Pv)) ⊂
n⋃
i=1

Z̃(Ak)\Z̃(Ak)gi ,

for some (gi,Wi, Gi) ∈ Ext(Fk,Sk)(Z̃). Let (g,W,G) ∈ Ext(Fk,Sk)(Z̃) denote the fibred

product of the gi over Z̃; here G ∈ Ext(Fk,Sk), since Ext(Fk,Sk) is closed under finite fibred

products. It is clear from the construction that f̃−1((Pv)) ∩ Z̃(Ak)g = ∅. By Proposition

4.12, there is a torsor (V,L) ∈ Ext(Fk,Sk)(X) and a surjective X-torsor morphism (θ, ψ) :

(V,L)→ (Z̃, F̃ ) such that there is a surjective Z̃-torsor morphism (V, kerψ)→ (W,G). To get

the required contradiction, one can then argue identically as in the proof of Theorem 1.1 in

[Sko09]. �

Proposition 4.14. Let X be a nice variety over a number field k. If X(Ak)Fk 6= ∅, then

X(Ak)Fk,O =
⋂
F∈Fk

⋂
[Z]∈H1(X,F )

Znice

⋃
[τ ]∈H1(k,F )

f τ (Zτ (Ak)O),

that is, we can restrict our attention to nice X-torsors [Z] ∈ H1(X,F ) only. Similarly if we

replace “Fk” by “FSol
k ”.

Proof. The inclusion “⊂” is clear, so we just prove the opposite inclusion.

Let (Pv) ∈
⋂
F

⋂
[Z]nice

⋃
[τ ] f

τ (Zτ (Ak)O). Fix F ∈ Fk and [f : Z → X] ∈ H1(X,F ). We

need to show that (Pv) ∈
⋃

[τ ]∈H1(k,F ) f
τ (Zτ (Ak)O). Consider (Z,F ) ∈ Fk(X). Let Z0 be

a connected component of Z, and let F 0 ≤k F be its stabiliser. Then we have an X-torsor

morphism (Z0, F 0)→ (Z,F ), given by inclusion.

By the notion of cofinal coverings in [Sto07] and by Lemma 5.7 in [Sto07], using our assump-

tion that X(Ak)Fk 6= ∅, we know that there exist a F ′ ∈ Fk and a (f ′,W, F ′) ∈ Fk(X) with W

geometrically connected such that there is an X-torsor morphism (W,F ′)→ (Z0, F 0). Hence,

by composition, we get an X-torsor morphism

(W,F ′)→ (Z0, F 0)→ (Z,F ),

with W geometrically connected. We can then apply Lemma 5.6 of [Sto07] to conclude that

there exists a twist (f τ , Zτ , F τ ) ∈ Fk(X) of (f, Z, F ) such that there is an X-torsor morphism

(W,F ′)→ (Zτ , F τ ),

with W geometrically connected. Since W is also smooth and projective (cf. Lemma 4.1), then

W is nice, and the same is true for all its twists.

Without loss of generality (twisting if necessary), we can assume that (Pv) lifts to some

point in W (Ak)O. We can then use Lemma 5.6 in [Sto07] and the functoriality of O to deduce

that (Pv) ∈
⋃
τ∈H1(k,F ) f

τ (Zτ (Ak)O). Since F and f were arbitrary, we conclude that⋂
F

⋂
[Z] nice

⋃
[τ ]

f τ (Zτ (Ak)O) ⊂ X(Ak)Fk,O.

Hence,
⋂
F

⋂
[Z]nice

⋃
[τ ] f

τ (Zτ (Ak)O) = X(Ak)Fk,O, meaning that we can restrict our atten-

tion to nice torsors only. Similarly for the “solvable version”. �
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Proof of Theorem 3.1. By Theorem 4.7, X(Ak)Fk,O ⊂ X(Ak)Ext(Fk,Sk).

If X(Ak)Ext(Fk,Sk) = ∅, then trivially X(Ak)Ext(Fk,Sk) ⊂ X(Ak)Fk,O, and we are done. So

suppose X(Ak)Ext(Fk,Sk) 6= ∅. In particular, this implies that X(Ak)Fk 6= ∅. By Theorem 4.13,

for any [Z] ∈ H1(X,F ) and any F ∈ Fk, we have

X(Ak)Ext(Fk,Sk) =
⋃

[τ ]∈H1(k,F )

f τ (Zτ (Ak)Ext(Fk,Sk)).

Hence,
X(Ak)Ext(Fk,Sk) =

⋂
F∈Fk

⋂
[Z] nice

⋃
[τ ] f

τ (Zτ (Ak)Ext(Fk,Sk))

⊂
⋂
F∈Fk

⋂
[Z] nice

⋃
[τ ] f

τ (Zτ (Ak)O)

= X(Ak)Fk,O,
where the inclusion in the second line comes from Condition 2, and the equality in the bottom

line comes from Proposition 4.14 (and the fact that X(Ak)Fk 6= ∅).
A similar proof holds if we replace “Fk” by “FSol

k ”. �

Remark 4.15. Proposition 4.14 makes Theorem 3.1 robust enough for applications. Indeed,

we usually only have Condition 2 as we have stated it, and not a more general version as, for

example, is the case for the proof of X(Ak)Desc ⊂ X(Ak)ét,Br in [Sko09]: there, as a corollary

to a result by Gabber, one has that W (Ak)Lk ⊂W (Ak)ét,Br for all smooth, projective varieties

over k (cf. Lemma 2.8 in [Sko09]). Proposition 4.14 tells us that, in fact, our version of

Condition 2 is sufficient.

5. Some applications of Theorem 3.1

5.1. The étale-Brauer set and its variations. Let X be a nice variety over k. Consider

the “solvable” étale-Brauer set

X(Ak)Sol,Br :=
⋂

F∈FSol
k

⋂
[Z]∈H1(X,F )

⋃
[τ ]∈H1(k,F )

f τ (Zτ (Ak)Br).

In our terminology, O = Br. As we have seen in the introduction, for any nice variety W over k

we have that W (Ak)Br = W (Ak)Ck . Hence, in our setting, we can take Sk = Ck. As Condition

1 is clear, we only need to check that the “solvable version” of Conditions 2 and 3 hold. The

latter condition is easy to see by the closure properties of FSol
k , and the former one holds since

Ck ⊂ Ext(FSol
k , Ck). Hence, by applying the “solvable version” of Theorem 3.1, we can deduce

the following.

Theorem 5.1. Let X be a nice variety over k. Then X(Ak)Sol,Br = X(Ak)Ext(FSol
k , Ck). �

5.2. The algebraic étale-Brauer set and its variations. Let X be a nice variety over k.

Consider the algebraic étale-Brauer set

X(Ak)ét,Br1 :=
⋂
F∈Fk

⋂
[Z]∈H1(X,F )

⋃
[τ ]∈H1(k,F )

f τ (Zτ (Ak)Br1).

In our terminology, O = Br1.

Theorem 5.2 ([Sko01] Theorem 6.1.1). Let Z be a variety over a number field k such that

k[Z]∗ = k
∗
. Then

(5.1) Z(Ak)Br1 =
⋂

λ:Ŝ↪→Pic(Z)

⋃
type(Y,f)=λ

f(Y (Ak)),
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where Ŝ ranges over the finitely generated Gal(k/k)-submodules of Pic(X).

Remark 5.3. We recall that the type λ of a torsor (f, Y, S) ∈Mk(Z) is defined by χ([Y ]) =: λ,

where χ is the map in the fundamental exact sequence due to Colliot-Thélène and Sansuc (see

[Sko01])

0→ H1(k, S)→ H1(Z, S)
χ−→ HomGal(k/k)(Ŝ,Pic(Z))

∂−→ H2(k, S)→ H2(Z, S),

where Ŝ := Homk−groups(S,Gm,k) is the module of characters of S. We remark that there is an

anti-equivalence of categories{
algebraic linear k-groups

of multiplicative type

}
↔
{

finitely generated Z-modules with

a continuous action of Gal(k/k)

}
given by the functor S 7→ Ŝ, with inverse given by M 7→ Spec

(
k[M ]Gal(k/k)

)
.

In particular, Theorem 5.2 tells us that, for any nice variety W over k, we have W (Ak)Mk =

W (Ak)Br1 . A sensible idea would be to take Sk = Mk, but unfortunately Mk 6⊂ Ck, so Con-

dition 1 fails. We take instead Sk = Tk ⊂ Ck, and consider Ext(Fk, Tk). Since our aim is to

apply Theorem 3.1, we check that Conditions 1, 2, and 3 hold for our choice of Sk.

Condition 1. This holds since Tk ⊂ Ck, the k-twist of an algebraic torus is again an al-

gebraic torus (”being an algebraic torus” is a geometric condition), and since Proposition 5.2

(which tells us that W (Ak)Br1 ⊂W (Ak)Tk) holds.

Condition 2. As we have seen, W (Ak)Mk ⊂ W (Ak)Br1 . But, by definition of groups of

multiplicative type,

Mk = Ext(Fk, Tk) ∩ Abk ⊂ Ext(FSol
k , Tk) ⊂ Ext(Fk, Tk),

where, in the first inclusion, we have used the fact that Tk ⊂ Abk ⊂ Solk and that Solk is closed

under taking quotients. Hence, Condition 2 and its “solvable version” also hold.

Condition 3. Notice that Tk is clearly closed under taking finite direct products and that

it contains the trivial group. By Lemma 2.9, we have that Ext(Fk, Tk) is closed under taking

direct products; moreover, the hypotheses of Lemma 2.12 hold (with B = Tk), meaning that

the conclusion of Lemma 2.12 also holds. The same is true for Ext(FSol
k , Tk). Hence, it remains

to check that Ext(Fk, Tk) and Ext(FSol
k , Tk) are closed under taking closed k-subgroups and

k-twists.

Lemma 5.4. Ext(Fk, Tk) = Ext(Fk,Mk) and Ext(FSol
k , Tk) = Ext(FSol

k ,Mk).

Proof. We first prove that Ext(Fk, Tk) = Ext(Fk,Mk). The inclusion “⊂” is clear. For the

other inclusion, let G ∈ Ext(Fk,Mk) fit into the short exact sequence 1→M → G→ F → 1,

with F ∈ Fk and M ∈ Mk. But M contains a maximal subtorus T (cf. [DGA], SGA3.IV,

§1.3), which is a normal subgroup of G (since T is characteristic in M) and with G/T ∈ Fk.
Hence, G fits into the short exact sequence

1→ T → G→ G/T → 1,

with T ∈ Tk and G/T ∈ Fk.
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We now prove that Ext(FSol
k , Tk) = Ext(FSol

k ,Mk). Using the closure properties of solvable

groups, we have Ext(FSol
k , Tk) = Ext(Fk, Tk) ∩ Solk and Ext(FSol

k ,Mk) = Ext(Fk,Mk) ∩ Solk.

But we have just seen that Ext(Fk, Tk) = Ext(Fk,Mk); by intersecting both sides with Solk,

the result follows. �

Lemma 5.5. Ext(Fk, Tk) is closed under k-subgroups. The same holds for Ext(FSol
k , Tk).

Proof. Let G ∈ Ext(Fk, Tk) and let H ≤k G be a k-subgroup of G. Suppose that G fits into a

short exact sequence 1 → T → G → F → 1, where T ∈ Tk and F ∈ Fk. Then H ∩ T ∈ Mk

and H/(T ∩H) ∈ Fk, so H fits into the short exact sequence

1→ H ∩ T → H → H/(H ∩ T )→ 1,

that is, H ∈ Ext(Fk,Mk). By Lemma 5.4, we deduce that H ∈ Ext(Fk, Tk). An analogous

proof also gives the result for Ext(FSol
k , Tk), once we notice that G ∈ Ext(FSol

k , Tk) implies,

since solvable groups are closed under extensions, that G is solvable, meaning that H is also

solvable and thus that H/(T ∩H) ∈ FSol
k . �

Lemma 5.6. Mk is closed under k-subgroups and under “base changing/restricting”.

Proof. The first statement is clear, by definition of groups of multiplicative type. For the

second statement, let M ∈Mk and let l/k be a finite extension. Then, since “being a group of

multiplicative type” is a geometric condition, Ml ∈Ml. Moreover, sinceMl = Ext(Fl, Tl)∩Abl
and since the Weil restriction preserves tori, commutative groups, finite groups, and short exact

sequences, it follows that Rl/k(Ml) ∈ Ext(Fk, Tk) ∩ Abk =Mk. �

Lemma 5.7. Ext(Fk, Tk) is closed under k-twists. The same is true for Ext(FSol
k , Tk).

Proof. By Lemma 5.6, we can apply Lemma 2.11 with B =Mk to conclude that Ext(Fk,Mk)

is closed under taking k-twists. By Lemma 5.4, we have that Ext(Fk,Mk) = Ext(Fk, Tk),
hence the result. The same proof works for Ext(FSol

k , Tk) as well. �

Hence, Condition 3 and its “solvable version” hold.

Since all the hypotheses in the statement of Theorem 3.1 are satisfied, by applying it we

have just proved the following.

Theorem 5.8. Let X be a nice variety over a number field k. Then

X(Ak)ét,Br1 = X(Ak)Ext(Fk, Tk).

Similarly,

X(Ak)Sol,Br1 = X(Ak)Ext(FSol
k , Tk).

Lemma 5.9. Ext(Fk, Tk) = RRk. In particular, Ext(FSol
k , Tk) = RRSolk .

Proof. We follow [Mey10], proof of Lemma 2.2. We first prove that if G ∈ Ext(Fk, Tk), then

G ∈ Rk; since Ext(Fk, Tk) is closed under taking k-subgroups, it follows that G ∈ RRk. So

let G ∈ Ext(Fk, Tk) with short exact sequence 1 → T → G → F → 1. Then G0/T is trivial,

since finite and connected, meaning that T = G0. It follows that Ru(G) = Ru(G0) = Ru(T ) is

trivial. Hence, G ∈ Rk, as required.

For the converse implication, suppose that G ∈ Lk\Ext(Fk, Tk). Then clearly G0 6∈ Tk. If

G0 6∈ Rk, then we are done. So suppose that G0 ∈ Rk. Its commutator DG0 is a connected

linear k-subgroup, which is reductive and semisimple (since G0 is reductive) ([Mil], Theorem
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15.1), and non-trivial, since otherwise G0 ∈ Tk, a contradiction. Since DG0 is connected and

semisimple, it contains a k-subgroup of type A1 ([Spr98], Theorem 7.2.4). But groups of type

A1 all have non-reductive k-subgroups, so we are done.

The last claim is clear, since Ext(FSol
k , Tk) = Ext(Fk, Tk) ∩ Solk. �

Corollary 5.10. Let X be a nice variety over a number field k. Then

X(Ak)ét,Br1 = X(Ak)Ext(Fk, Tk) = X(Ak)Ext(Fk,Mk) = X(Ak)RRk .

Similarly,

X(Ak)Sol,Br1 = X(Ak)Ext(FSol
k , Tk) = X(Ak)Ext(FSol

k ,Mk) = X(Ak)RR
Sol
k .

Proof. Clear from Theorem 5.8, Lemma 5.4, and Lemma 5.9. �

6. Interlude

Theorem 6.1. Let X be a nice variety over k. Let A ⊂ B ⊂ Lk be such that B ⊂ Ext(A,Uk).
Then X(Ak)A = X(Ak)B.

Before we can prove the above theorem, we need to recall some preliminary results.

Let A ⊂ B be as in the statement of Theorem 6.1 and let G ∈ B ⊂ Ext(A,Uk), say fitting

into the short exact sequence 1→ UG → G→ AG → 1, with UG ∈ Uk and AG ∈ A. We want

to show that H1(K,G) ∼= H1(K,AG) as pointed sets, for K = k and K = kv, for all v ∈ Ωk.

Since we are dealing with pointed sets, showing that ker(H1(K,G)→ H1(K,AG)) is trivial

is not enough to conclude injectivity. Fortunately, UG is a normal K-subgroup of G, meaning

that we can use the following result.

Proposition 6.2 (§I.5.5 Corollary 2, [Ser01]). Let [τ ] ∈ H1(K,G). Then the elements of

H1(K,G) with the same image in H1(K,AG) as [τ ] are in bijection with the elements of the

quotient of H1(K,U τG) by the action of the group H0(K,AτG). �

Corollary 6.3. The map of pointed sets H1(K,G)→ H1(K,AG) is injective.

Proof. Since UK is closed under K-twists (as “being unipotent” is a geometric property), U τG ∈
UK . But H1(K,U τ ) is trivial (cf. [Ser01], §III.2.1, Proposition 6), meaning that the quotient

of H1(K,U τG) by the action of the group H0(K,AτG) is also trivial. The result then follows by

Proposition 6.2. �

The surjectivity of H1(K,G)→ H1(K,AG) follows from a “vanishing” theorem for unipotent

K-liens by Douai (see [Bor93], Corollary 4.2), which requires some knowledge of non-abelian

second Galois cohomology. We refer the reader to [FSS98] (1.2) and (5.1), and to [Bor93] for

more details on the construction of K-liens and on the theory of non-abelian cohomology.

Finally, since H1(K,G)→ H1(K,AG) preserves base points, we have the following.

Corollary 6.4. For K = k or K = kv, for any place v, we have that H1(K,G) ∼= H1(K,AG)

as pointed sets. �

Proof of Theorem 6.1. Let G ∈ B. Since B ⊂ Ext(A,Uk), G fits into a short exact sequence

1→ UG → G→ AG → 1,

where UG ∈ Uk and AG ∈ A. Fix [g : Y → X] ∈ H1(X,G). We can push forward Y along

p : G→ AG to obtain [ag : Z → X] ∈ H1(X,AG).
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The inclusion X(Ak)g ⊂ X(Ak)ag is easy. For the opposite inclusion, let (xv) ∈ X(Ak)ag ,
so that [Z]((xv)) ∈ Im(H1(k,AG)→

∏
v∈Ωk

H1(kv, AG)). Our aim is to show that [Y ]((xv)) ∈
Im(H1(k,G) →

∏
v∈Ωk

H1(kv, G)), as, using the functorial description of obstructions, this

would indeed imply that (xv) ∈ X(Ak)g.
By Corollary 6.4, for any field K containing k,

(6.1) p∗ : H1(K,G)
∼−→ H1(K,AG)

is an isomorphism of pointed sets, where p∗ is induced by the projection p : G → AG. In

particular, (6.1) holds for K = k or K = kv, for any place v ∈ Ωk.

Now, for each place v ∈ Ωk, we have the commutative diagram

H1(X,AG)

H1(kv, G)H1(X,G)

H1(kv, AG) H1(k,AG).

H1(k,G)
x∗v resv

resv

pX∗
x∗v

p∗p−1
∗ p∗p−1

∗

From the left square, we deduce that

p∗([Y ](xv)) = pX∗ [Y ](xv) = [Z](xv) ∈ Im
(
H1(k,AG)→ H1(kv, AG)

)
.

But H1(k,AG) = p∗(H
1(k,G)) and H1(kv, AG) = p∗(H

1(kv, G)), by (6.1). This fact and the

commutativity of the right square in the above diagram together imply that

p∗([Y ](xv)) ∈ Im
(
p∗(H

1(k,G))→ p∗(H
1(kv, G))

)
= p∗(Im

(
H1(k,G)→ H1(kv, G)

)
).

By applying p−1
∗ , we get [Y ](xv) ∈ Im

(
H1(k,G)→ H1(kv, G)

)
; taking the product over all

places v ∈ Ωk then gives the required result. Hence, X(Ak)ag ⊂ X(Ak)g, and so

(6.2) X(Ak)ag = X(Ak)g.

Intersecting over all torsors in H1(X,G) and all G ∈ B gives

(6.3)
⋂
G∈B

⋂
[Y ]∈H1(X,G)

X(Ak)ag =
⋂
G∈B

⋂
[Y ]∈H1(X,G)

X(Ak)g.

For any G ∈ A ⊂ B, we have G = AG and g = ag. Hence, the left-hand side of (6.3) can be

rewritten as⋂
G∈B

⋂
[g:Y→X]∈H1(X,G)

X(Ak)ag = X(Ak)A ∩

 ⋂
G∈B\A

⋂
[ag :Z→X]∈H1(X,AG)

X(Ak)ag


︸ ︷︷ ︸

⊃X(Ak)A

= X(Ak)A.

Hence, since the right-hand side of (6.3) is, by definition, X(Ak)B, we get X(Ak)A = X(Ak)B,

as required. �

Remark 6.5. In Theorem 6.1, we use Uk just to guarantee that H1(K,G) ∼= H1(K,AG) as

pointed sets for K = k and K = kv, for all v ∈ Ωk (cf. (6.1)). In theory, we can get a similar

result as Theorem 6.1 if we replace Uk with any other S ⊂ Lk such that (6.1) holds for K = k

and K = kv, for all v ∈ Ωk: for example, when k is a totally imaginary number field, a good

candidate for such an S is the set of semisimple simply connected linear algebraic groups over

k − see §3.1 of [Ser01] and Corollary 5.1 of [Bor93].
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Example 6.6. Any G ∈ Abk can be written as G = U ×M , where U ∈ Uk and M ∈ Mk

(cf. [Mil12], 1.21). Hence, we have the inclusions Mk ⊂ Abk ⊂ Ext(Mk,Uk), implying that

X(Ak)Mk = X(Ak)Abk .

Corollary 6.7. Let G ∈ Lk. Then X(Ak)H
1(X,G) = X(Ak)H

1(X,RG), where RG := G/Ru(G).

Proof. Let A = {RG} and B = {G,RG} in Theorem 6.1. �

Corollary 6.8. Let X be a nice variety over k. Then X(Ak)Uk = X(Ak).

Proof. Let A = {1} and B = Uk. Clearly Uk ⊂ Ext({1},Uk) = Uk, and so the hypotheses of

Theorem 6.1 are satisfied. Therefore, we can conclude that X(Ak)Uk = X(Ak){1} = X(Ak), as

required. �

Remark 6.9. Since H1(K,U) is trivial for all U ∈ Uk, for K = k and K = kv, for all v ∈ Ωk

(cf. [Ser01], §III.2.1, Proposition 6), we have that, in the proof of Corollary 6.8, (6.1) holds

without having to resort to non-abelian second Galois cohomology.

Since linear algebraic unipotent groups over k give no obstruction, and since reductive groups

are, in a sense, the “opposite” of unipotent groups, the following shouldn’t be too surprising.

Corollary 6.10. Let X be a nice variety over k. Then X(Ak)Lk = X(Ak)Rk .

Proof. Let A = Rk and B = Lk. It is clear that Lk = Ext(Rk, Ru(Lk)) ⊂ Ext(Rk,Uk). This

means that the hypotheses of Theorem 6.1 are satisfied. Therefore, we can conclude that

X(Ak)Lk = X(Ak)Rk , as required. �

6.1. Some corollaries. The above also suggests the following proposition.

Proposition 6.11. Let B ⊂ Lk be such that B/Ru(B) ∈ B, for any B ∈ B. Let X be a nice

variety over k. Then X(Ak)B = X(Ak)B∩Rk .

Proof. Let A = B ∩ Rk ⊂ B. By assumption B/Ru(B) ∈ B ∩ Rk for any B ∈ B, so we can

apply Theorem 6.1 to conclude the result. �

Note that, for example, B = Rk, Ck,Abk,Solk all satisfy the hypotheses of Proposition 6.11,

as they are all closed under taking quotients. Hence, we can immediately deduce the following.

Corollary 6.12. X(Ak)Ck = X(Ak)Ck∩Rk . �

Remark 6.13. The above could have also been deduced in the following way. Let PGL:=

∪n≥1PGLn. For X nice over k, we know that X(Ak)Ck = X(Ak)Br = X(Ak)PGL: the last

equality is Proposition 5.3.4 in [Sko01], while the first one follows from [Har02]. Since Rk ∩
Ck ⊂ Ck, it follows immediately that X(Ak)Ck ⊂ X(Ak)Ck∩Rk . Now, for any n ≥ 1, PGLn is

both connected and reductive. It follows that PGL⊂ Rk ∩ Ck, meaning that X(Ak)Ck∩Rk ⊂
X(Ak)PGL = X(Ak)Ck . Hence, X(Ak)Ck = X(Ak)Ck∩Rk .

Corollary 6.14. X(Ak)Solk = X(Ak)Solk∩Rk . In particular, X(Ak)Sol,Br1 = X(Ak)Solk .

Proof. By Proposition 6.11, the first statement is obvious, so we just need to prove the last

statement. We show that Ext(FSol
k , Tk) = Solk ∩ Rk. Let G ∈ Solk ∩ Rk. Then G0 is

reductive, connected, and solvable. Hence, G0 ∈ Tk. Moreover, since G ∈ Solk, then G/G0 ∈
FSol
k . Conversely, let G ∈ Ext(FSol

k , Tk). Then G ∈ Solk, as solvable groups are closed under

extensions, and G ∈ Rk by Lemma 5.9. Hence, Ext(FSol
k , Tk) = Solk ∩ Rk. From Corollary

5.10 and the fact that X(Ak)Solk = X(Ak)Solk∩Rk , we can then deduce the required result. �
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Corollary 6.15. X(Ak)Ext(FSol
k , Ck) = X(Ak)Ext(FSol

k , Ck)∩Rk .

Proof. Let G ∈ Ext(FSol
k , Ck). We need to check that G/Ru(G) ∈ Ext(FSol

k , Ck). We know that

G fits into a short exact sequence

1→ C → G→ F → 1,

where C ∈ Ck and F ∈ FSol
k . Notice that C = G0. Indeed, by definition of G0, we have

C ⊂ G0, and since C is normal in G, it follows that C is also normal in G0. Consider the short

exact sequence 1 → G0 → G → G/G0 → 1, where G/G0 ∈ Fk. This induces the short exact

sequence

1→ G0/C → G/C ∼= F → G/G0 → 1;

since G0/C is connected and injects into the finite group F , it must be trivial, i.e. C = G0.

Hence, G fits into the short exact sequence

1→ G0 → G→ F → 1.

Now, since Ru(G) is, by definition, a connected normal subgroup of G, we have that Ru(G) is

normal in G0. Hence, we get the short exact sequence

1→ G0/Ru(G)→ G/Ru(G)→ F → 1,

where G0/Ru(G) ∈ Ck and F ∈ FSol
k , meaning that G/Ru(G) ∈ Ext(FSol

k , Ck). By Proposition

6.11, the result follows. �

Remark 6.16. A similar proof also shows that X(Ak)Ext(FAb
k ,Ck) = X(Ak)Ext(FAb

k ,Ck)∩Rk , and

similarly for any subset of Fk extended by Ck.

Corollary 6.17. X(Ak)Tk = X(Ak)Abk∩Ck = X(Ak)Solk∩Ck .

Proof. Since both Solk and Ck are closed under quotients, so is their intersection, meaning that

we can apply Proposition 6.11 to deduce that X(Ak)Solk∩Ck = X(Ak)Solk∩Ck∩Rk = X(Ak)Tk .

Similarly, by noticing that Tk = Ck ∩ Rk ∩ Abk and that abelian groups are also closed under

quotients, we get the other equality in the statement of the corollary. �

7. A network of obstructions

7.1. Summary. For any nice variety X over k, Figure 1 summarises the relations between

some of the obstruction sets mentioned in this paper. The rest of this section is to remind the

reader of why all the inclusions in Figure 1 can be strict.

Proposition 7.1. In general, X(k) ( X(Ak)Lk/Rk/ét,Br, for X a nice variety over k.

Proof. This is the content of Poonen’s paper [Poo10]. �

Proposition 7.2. In general, X(Ak)RR
Ab/Abk/Mk/Br1 ( X(Ak)∅/Uk , for X a nice variety over

k.

Proof. See [BSD75] for an example over k = Q. �

Remark 7.3. More strongly, we have that, in general, X(Ak)Tk/C
Ab
k /CSol

k ( X(Ak)∅/Uk . Indeed,

let X be the (nice) degree 4 del Pezzo surface over k = Q in [BSD75]. We know that X(Ak)Br1 =

∅ but X(Ak) 6= ∅. Moreover, since X is geometrically rational, π1(X) = 0, meaning that there

are no non-trivial finite torsors over X. In particular, X(Ak)Ext(Fk, Tk) = X(Ak)Tk . Hence,

∅ = X(Ak)Br1 = X(Ak)Mk = X(Ak)Ext(Fk, Tk)∩Abk = X(Ak)Tk 6= X(Ak).
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X(k)

X(Ak)Lk/Rk/ét,Br

X(Ak)Ext(FSol
k , Ck)/Ext(FSol

k , Ck)∩Rk/Sol,Br

X(Ak)Ck/Ck∩Rk/PGL/Br

X(Ak)RRk/ét,Br1

X(Ak)RR
Sol
k /RSol

k /Solk/Sol,Br1

X(Ak)RR
Ab/Abk/Mk/Br1

X(Ak)Fk

X(Ak)F
Sol
k

X(Ak)F
Ab
k

X(Ak)∅/Uk

Figure 1.

Proposition 7.4. In general, for X a nice variety over k,

(a) X(Ak)Ab,Br1 ( X(Ak)RR
Ab/Abk/Mk/Br1;

(b) X(Ak)Ab,Br ( X(Ak)Ck/Ck∩Rk/PGL/Br;

(c) the column in Figure 1 with endpoints X(Ak)RRk/ét,Br1 and X(Ak)RR
Ab/Abk/Mk/Br1 can

be strictly contained in the column with endpoints X(Ak)Fk and X(Ak)F
Ab
k ;

(d) X(Ak)Ck/Ck∩Rk/PGL/Br 6⊂ X(Ak)Ab,Br1;

(e) X(Ak)F
Sol
k 6⊂ X(Ak)RR

Ab/Abk/Mk/Br1.

Proof. Let Y = Ya,b,c and X = Ya,b,c/〈ι〉 be, respectively, the (nice) K3 and Enriques surfaces

over k = Q from [VAV11]. Then (f, Y, F ) ∈ FAb
k (X), where F = Z/2Z.

(a), (b), (d). Using Kummer theory and following [VAV11], it is not difficult to show that⋃
[τ ]∈H1(X,F ) f

τ (Y τ (Ak)Br1)) = ∅, meaning, in particular, that X(Ak)Ab,Br1 = ∅. Moreover, in

[BBM+], the authors have shown that X(Ak)Br 6= ∅.
(c), (e). Note that Ya,b,c(Ak)Fk = Ya,b,c(Ak) 6= ∅ and Ya,b,c(Ak)ét,Br1 = Ya,b,c(Ak)Br1 = ∅. �

Proposition 7.5. In general, for X a nice variety over k,

(a) X(Ak)F
Sol
k ( X(Ak)F

Ab
k ;

(b) X(Ak)RR
Ab/Abk/Mk/Br1 6⊂ X(Ak)Fk .

Proof. (a), (b). Let X be the (nice) bielliptic surface over k = Q from Skorobogatov’s

counterexample (see [Sko01], Chapter 8). Then X(Ak)F
Sol
k = ∅ (cf. §5.1 of [HS02]), but

X(Ak)Br 6= ∅. �

Proposition 7.6. In general, for X a nice variety over k,

(a) the column in Figure 1 starting with X(Ak)Lk/Rk/ét,Br can be strictly contained in the

column starting with X(Ak)RRk/ét,Br1;

(b) X(Ak)RRk/ét,Br1 6⊂ X(Ak)Ck/Ck∩Rk/PGL/Br.

Proof. (a), (b). In [HVA13], the authors have constructed a (nice) K3 surface X over k = Q
such that X(Ak)Br = ∅ but X(Ak)Br1 6= ∅. Now, since any K3 surface is simply connected, we

have that π1(X) = 0. In particular, we have that X(Ak)ét,Br = X(Ak)Br and X(Ak)ét,Br1 =

X(Ak)Br1 . �



24 F. BALESTRIERI

Proposition 7.7. In general, the row in Figure 1 starting with X(Ak)Lk/Rk/ét,Br can be strictly

contained in the row starting with X(Ak)Ext(FSol
k , Ck)/Ext(FSol

k , Ck)∩Rk/Sol,Br, for X a nice variety

over k.

Proof. Let G be a finite, perfect (i.e. with G = DG), non-abelian, simple group; in particular,

G is not solvable. Let X and k be as in the conclusion of Corollary 6.1 in [Har00]. Since

G = π(X) and G is simple, it follows that X(Ak)F
Sol
k = X(Ak), as there are no non-trivial finite

solvable covers of X. This implies that X(Ak)Sol,Br1 = X(Ak)Br1 and X(Ak)Sol,Br = X(Ak)Br.

Since G is perfect, Br(X) = 0 (cf. the remark after Corollary 6.1 in [Har00]), meaning that

X(Ak)Br = X(Ak)Br1 and that Br(X)/Brk is finite. By taking k large enough, we can assume

that Br(X)/Brk is trivial and, thus, that X(Ak)Br = X(Ak). Hence,

X(Ak)Sol,Br1 = X(Ak)Br1 = X(Ak)Sol,Br = X(Ak)Br = X(Ak)F
Sol
k = X(Ak).

But, by construction of X, we have X(Ak)Fk ( X(Ak). Since X(Ak)ét,Br ⊂ X(Ak)ét,Br1 ⊂
X(Ak)Fk , the result follows. �

We conclude with an open question.

Question 7.8. What are, if they exist, the translations of X(Ak)Ab,Br and X(Ak)Ab,Br1 in

pure “descent-type” terms?
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