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Abstract. Let k be any field. Let X ⊂ PN
k be a degree d ≥ 2 hypersurface. Under some

conditions, we prove that if X(K) 6= ∅ for some extension K/k with n := [K : k] ≥ 2 and
gcd(n, d) = 1, then X(L) 6= ∅ for some extension L/k with gcd([L : k], d) = 1, n - [L : k], and
[L : k] ≤ nd− n− d. Moreover, if a K-solution is known explicitly, then we can compute L/k
explicitly as well. As an application, we improve upon a result by Coray on smooth cubic
surfaces X ⊂ P3

k by showing that if X(K) 6= ∅ for some extension K/k with gcd([K : k], 3) = 1,
then X(L) 6= ∅ for some L/k with [L : k] ∈ {1, 10}.

1. Introduction

Springer’s theorem for quadratic forms famously states that, if a quadratic form ϕ on a
finite-dimensional vector space over a field k is isotropic over some extension K/k of odd degree,
then it is already isotropic over k (see [Spr52] for the case when the characteristic is not 2
and [EKN08, Corollary 18.5] for any characteristic). Equivalently, in more geometric terms,
if X ⊂ PNk is a degree 2 hypersurface, then X(K) 6= ∅ for some extension K/k of odd degree
implies that X(k) 6= ∅. A natural question to ask is whether Springer’s theorem generalises to
higher degree forms.

Question 1.1. Given a degree d ≥ 3 hypersurface X ⊂ PNk over a field k, is it true that if
X(K) 6= ∅ for some extension K/k with gcd([K : k], d) = 1, then X(k) 6= ∅?

When d ≥ 4, the answer to Question 1.1 is likely to be no in general (see e.g. [Cor76, Example
2.8] for a counterexample when d = 4), while, when d = 3, Cassels and Swinnerton-Dyer have
conjectured that the answer to Question 1.1 should instead be yes. Some progress towards the
conjecture by Cassels and Swinnerton-Dyer has been obtained by Coray (see [Cor76]), who
proved, for any smooth cubic surface X ⊂ P3

k over a perfect field k, that if X(K) 6= ∅ for
some extension K/k with gcd([K : k], 3) = 1, then X(L) 6= ∅ for some extension L/k with
[L : k] ∈ {1, 4, 10}. In recent work, Ma has been able to remove the condition on the field being
perfect, proving Coray’s result for any field (see [Ma21]). Moreover, when k is a global field,
Rivera and Viray have shown that, if the Brauer-Manin obstruction is the only one for the
Hasse principle for rational points on smooth cubic surfaces in P3 over k (and, by a conjecture
by Colliot-Thélène and Sansuc [CTS79], this should always be the case), then the conjecture by
Cassels and Swinnerton-Dyer holds for such surfaces (see [RV21]).

In this paper, we are concerned with the following much weaker version of Question 1.1.

Question 1.2. Let X ⊂ PNk be a degree d ≥ 3 hypersurface over a field k. If X(K) 6= ∅ for
some finite extension K/k with gcd([K : k], d) = 1, can we find some (somewhat explicit) finite
extension L/k with gcd([L : k], d) = 1, [K : k] - [L : k], and X(L) 6= ∅?

Our main theorem answers Question 1.2 positively under some assumptions on d and [K : k].
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Theorem (Theorem 3.6). Let k be any field. Let X ⊂ PNk be a degree d ≥ 2 hypersurface.
Suppose that X(K) 6= ∅ for some simple extension K/k with n := [K : k] ≥ 2 and gcd(n, d) = 1.
If Pbad(nd − n − d) = ∅ (see Definition 3.5), then X(L) 6= ∅ for some extension L/k with
gcd([L : k], d) = 1, n - [L : k], and [L : k] ≤ nd − n − d, where a set D of possible values for
[L : k] is explicitly computable. Moreover, if a point in X(K) 6= ∅ is known explicitly, then L/k
can be explicitly computed as well.

As a corollary of the above theorem, we can improve upon Coray’s and Ma’s results.
Theorem (Theorem 3.8). Let k be a field and let X ⊂ PNk be a cubic hypersurface over k. If
X(K) 6= ∅ for some simple field extension K/k with [K : k] = 4, then X(L) 6= ∅ for some
extension L/k with [L : k] ∈ {1, 5}.
Corollary 1.3. Let k be a field and let X ⊂ P3

k be a smooth cubic surface over k. If X(K) 6= ∅ for
some extension K/k with gcd([K : k], 3) = 1, then X(L) 6= ∅ for some L/k with [L : k] ∈ {1, 10}.
Proof. By Coray’s and Ma’s results, we know, under the hypotheses of the corollary, that there
exists some L/k with [L : k] ∈ {1, 4, 10} and X(L) 6= ∅. If [L : k] = 4, then either L/k is simple,
in which case, by Theorem 3.8, there is some other L′/k with [L′ : k] ∈ {1, 5} and X(L′) 6= ∅,
or L/k is not simple. If L/k is not simple, then, since it is finite, it must be a tower of simple
extensions L/k(α)/k with [L : k(α)] = [k(α) : k] = 2. Then Xk(α) is a smooth cubic surface
as well, and Xk(α)(L) 6= ∅, where [L : k(α)] = 2; this implies that X(k(α)) 6= ∅. Repeating
the same argument with k(α) and k, we get that X(k) 6= ∅ and we can thus let L′ = k. In
any case, we have found some L′/k with [L′ : k] ∈ {1, 5} and X(L′) 6= ∅. If L′ = k we are
done, and if [L′ : k] = 5, then any quadratic extension L′′/L′ (thus with [L′′ : k] = 10) satisfies
X(L′′) 6= ∅. �

Finally, when d and n are both primes, we obtain the following refinement of Theorem 3.6.
Theorem (Corollary 3.10). Let k be any field. Let X ⊂ PNk be a degree d ≥ 3 hypersurface,
with d prime. Suppose that X(K) 6= ∅ for some extension K/k with n := [K : k] ≥ 2 prime
and gcd(n, d) = 1. Then X(L) 6= ∅ for some extension L/k with gcd([L : k], nd) = 1, and
[L : k] ≤ nd − n − d, where a set D of possible values for [L : k] is explicitly computable.
Moreover, if a point in X(K) 6= ∅ is known explicitly, then L/k can be explicitly computed as
well.
Remark 1.4. When taking into account Springer’s theorem for the case when d = 2 as well,
the statement of Theorem 3.10 then becomes completely symmetric in n and d.
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2. Preliminaries on degree d forms

Hypersurfaces X ⊂ PNk of degree d over a field k are equivalent to degree d (homogeneous)
forms in N + 1 variables over k. Since we are going to prove our main theorems in the language
of forms, we start by recalling some basic definitions.
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Definition 2.1. Let ϕ be a form of degree d on a finite-dimensional vector space V over a
field k. For any field extension K/k, we let the extension ϕK of ϕ be the degree d form on
VK := V ⊗k K defined by

ϕK(v ⊗ w) := wdϕ(v),
for all v ∈ V and w ∈ K. Note that if K = k, then we omit the subscript and write ϕk = ϕ.

Definition 2.2. Let ϕ be a form of degree d on a finite-dimensional vector space V over a field
k. We say that ϕ is isotropic over K if ϕK is isotropic, i.e, if there exists some non-zero w ∈ VK
with ϕK(w) = 0; otherwise, we say that ϕ is anisotropic over K.

Remark 2.3. If X ⊂ PNk is a degree d hypersurface over a field k corresponding to the degree
d form ϕ on kN+1, then, for any extension K/k, we have that X(K) 6= ∅ if and only if ϕK is
isotropic.

If (i0, ..., iN) ∈ ZN+1
≥0 and x := (x0, ..., xN), we denote by x(i0,...,iN ) the monomial in which xj

appears with exponent ij if ij > 0 and does not appear at all if ij = 0. In what follows, we will
sometimes need to focus on a special type of forms, which we call diagonal-full.

Definition 2.4. Let ϕ be a form of degree d on a finite-dimensional vector space V ∼= kN+1

over a field k, say
ϕ(x0, ..., xN) =

∑
(i0,...,iN )∈ZN+1

≥0 :
i0+...+iN =d

a(i0,...,iN )x
(i0,...,iN ),

with a(i0,...,iN ) ∈ k. We say that ϕ is diagonal-full if a(d,0,...,0), a(0,d,0,...,0), ..., a(0,...,0,d) 6= 0.
In more geometric terms, a degree d hypersurface X ⊂ PNk is diagonal-full if X is given by an
equation of the form ∑

(i0,...,iN )∈ZN+1
≥0 :

i0+...+iN =d

a(i0,...,iN )x
(i0,...,iN ) = 0

with a(i0,...,iN ) ∈ k and a(d,0,...,0), a(0,d,0,...,0), ..., a(0,...,0,d) 6= 0.

Remark 2.5. If a degree d form ϕ = ϕ(x0, ..., xN ) on a finite-dimensional vector space V ∼= kN+1

over a field k is not diagonal-full, then it is already isotropic over k: if, say, the monomial xdi is
missing, then

v := (0, ..., 0, 1︸︷︷︸
i-th coordinate

, 0, ..., 0) ∈ V

is a non-trivial zero of ϕ. This implies that, in much of what follows, we can restrict our
attention to diagonal-full forms.

Definition 2.6. Let ϕ be a form on a finite-dimensional vector space V ∼= kN+1 over a field k.
If K/k is a field extension, we let

D(ϕK) := {ϕK(w) : w ∈ VK ∼= KN+1, ϕK(w) 6= 0} ⊂ K×.

We denote by 〈D(ϕK)〉 the multiplicative set in K× whose elements are finite products of
elements in D(ϕK).

The following is a straightforward modification of [EKN08, Theorem 18.3, proof of (2)⇒ (3)].

Lemma 2.7. Let ϕ be a form of degree d on a finite-dimensional vector space V over k and let
f ∈ k[t] be a non-constant polynomial. If there exists some a ∈ k× such that af ∈ 〈D(ϕk(t))〉,
then ϕk(p) is isotropic for each irreducible polynomial p occurring to a power coprime to d in the
factorisation of f , where k(p) := k[t]/(p(t)).
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Proof. Since af ∈ 〈D(ϕk(t))〉, there exist some 0 6= h ∈ k[t] and v1, ..., vm ∈ V [t] such that

afhd =
m∏
i=1

ϕ(vi).

If it exists, let p ∈ k[t] be a non-constant monic irreducible factor of f appearing with exponent
λ coprime to d in the factorisation of f into irreducible polynomials, i.e. say f = pλf ′ with p
monic irreducible, deg(p) ≥ 1, p - f ′, and gcd(λ, d) = 1. Write vi = pkiv′i, where ki ≥ 0 and
p - v′i, for each i = 1, ...,m. Then

apλf ′hd = afhd =
m∏
i=1

ϕ(vi) =
m∏
i=1

pdkiϕ(v′i) = pd
∑m

i=1 ki

m∏
i=1

ϕ(v′i).

Since
λ+ dνp(h) = νp(apλf ′hd) = νp

(
m∏
i=1

pdkiϕ(v′i)
)

= d
m∑
i=1

ki +
m∑
i=1

νp(ϕ(v′i)),

where νp(−) denotes the valuation at p, and since gcd(λ, d) = 1, it follows that νp(ϕ(v′j)) ≥ 1
for some j ∈ {1, ...,m}. This means that ϕ(v′j) ≡ 0 mod p. Since by construction p - v′j , we also
have that v′j 6≡ 0 mod p. Hence, ϕk(p) is isotropic, as required. �

Lemma 2.8. Let d be a positive integer. Let k be a field and let ϕ be a diagonal-full form of
degree d on a finite-dimensional vector space V ∼= kN+1 over k. Suppose that ϕ is anisotropic. Let
0 6= s := (s0, ..., sN) ∈ V [t]. Then deg(ϕ(s)) = d deg(s), where deg(s) := maxi=0,...,N(deg(si)).

Proof. Let
Ideg(s) := {i ∈ {0, ..., N} : deg(si) = deg(s)}.

Since ϕ is diagonal-full, we can write it as
ϕ(x0, ..., xN) =

∑
(i0,...,iN )∈ZN+1

≥0 :
i0+...+iN =d

a(i0,...,iN )x
(i0,...,iN ),

with a(i0,...,iN ) ∈ k and a(d,0,...,0), a(0,d,0,...,0), ..., a(0,...,0,d) 6= 0. If deg(ϕ(s)) 6= d deg(s), then some
cancellation must have occured among the leading coefficients (not all 0, since ϕ is diagonal-full)
of those polynomials a(i0,...,iN )s(t)(i0,...,iN ) of degree d deg(s). (We note that, since d deg(s) is the
maximal degree that can possibly be attained, the polynomial s(t)(i0,...,iN ) has degree d deg(s) if
and only if ij = 0 for all j /∈ Ideg(s).) In particular, if we let 0 6= s̃ ∈ kN+1 ∼= V be defined by

s̃i =

s∗i if i ∈ Ideg(s),

0 if i /∈ Ideg(s),

where s∗i ∈ k denotes the leading coefficient of si(t), then s̃ must satisfy

ϕ(s̃) =
∑

(i0,...,iN )∈ZN+1
≥0 :

i0+...+iN =d

a(i0,...,iN )s̃
(i0,...,iN ) = 0,

which would imply that ϕ is isotropic, a contradiction. Hence, deg(ϕ(s)) = d deg(s), as
required. �

Lemma 2.9. Let k be any field and let ϕ be a degree d form on a finite-dimensional vector
space V ∼= kN+1 over k. If ϕ is anisotropic over k, then ϕk(t) is anisotropic over the function
field k(t).
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Proof. Assume, for a contradiction, that ϕk(t) is isotropic. Let w = (w0, ..., wN) ∈ k(t)N+1 be
a non-zero vector with ϕk(t)(w) = 0. Let h ∈ k(t) be such that hw := (hw0, ..., hwN) satisfies
hwi ∈ k[t] for all i = 0, ..., N and gcd(hw0, ..., hwN) = 1. Then ϕk(t)(hw) = hdϕk(t)(w) = 0. In
particular, if we specialise t = a for some a ∈ k, we also have ϕ((h(a)w0(a), ..., h(a)wN (a))) = 0.
Since ϕ is anisotropic over k, this implies that h(a)wi(a) = 0 for all i = 0, ..., N . But
this, in turn, implies that (t − a) | h(t)wi(t) for all i = 0, ..., N , which is a contradiction to
gcd(hw0, ..., hwN) = 1. Hence, ϕk(t) must be anisotropic, as required. �

3. Proof of the main theorems

In this section, using fairly simple arguments, we prove (in the language of forms) the main
theorems of the paper. Despite these arguments being generalisations to higher degree forms of
some of the ideas in the proof of Springer’s theorem, to the best of the author’s knowledge they
have not appeared anywhere in the literature before and are thus to be considered novel.

3.1. The case for general d and n. Before we can prove our first main theorem, we need
some preliminary definitions and results on partitions.

Definition 3.1. Let d, n ≥ 2 be positive integers. Let n∗ ∈ {1, ..., d− 1} be the unique integer
such that n∗ ≡ −n mod d. We define the set

Sd,n := {n∗ + jd : j ∈ Z≥0 and n∗ + jd < n(d− 1)} .

Definition 3.2. Let u ∈ Z>0. By a partition of u we mean a non-empty multiset [a1, ..., ar] with
r ∈ Z>0, ai ∈ Z>0, and u = ∑r

i=1 ai. By a subpartition of a partition [a1, ..., ar] of u we mean a
non-empty multisubset of [a1, ..., ar]. We let P(u) denote the set of all partitions of u.

We will need to characterise the maximal element in Sd,n and its partitions.

Lemma 3.3. For any positive integers n, d ≥ 2 with gcd(d, n) = 1 we have
max Sd,n = nd− n− d.

Proof. We assume first that n < d. If n∗ ∈ {1, 2, ..., d− 1} is such that n∗ ≡ −n mod d, then,
since n < d, we have n∗ = d− n. Hence,

Sd,n = {d− n+ jd : j ∈ Z≥0 and d− n+ jd < n(d− 1)}
= {d− n+ jd : j ∈ {0, 1, ..., n− 2}}

and so max Sd,n = d− n+ (n− 2)d = dn− n− d.
Assume now that d < n. If n∗ ∈ {1, 2, ..., d − 1} is such that n∗ ≡ −n mod d, then, since

d < n, we can write n∗ = αd− n where α is the unique positive integer strictly between n
d

and
d+n
d

. Hence,
Sd,n = {αd− n+ jd : j ∈ Z≥0 and αd− n+ jd < n(d− 1)}

= {αd− n+ jd : j ∈ {0, 1, ..., n− α− 1}}
and so max Sd,n = αd− n+ (n− α− 1)d = dn− n− d.

So, in any case, max Sd,n = dn− n− d, as required. �

Lemma 3.4. Let n, d ≥ 2 be integers with gcd(d, n) = 1. Let u ∈ Sd,n. If u 6= nd− n− d and
[a1, ..., ar] is a partition of u, then [a1, ..., ar] is a subpartition of the partition [a1, ..., ar, µd] of
dn− n− d, where µ := nd−n−d−u

d
∈ Z>0.

Proof. Write u = n∗ + jd for some j ∈ Z≥0 and dn− n− d = n∗ + j′d for some j′ ∈ Z≥0 with
j′ > j. By writing nd−n−d = u+ (j′− j)d and by simple computations, the result follows. �



6 F. BALESTRIERI

Definition 3.5. Let n, d ≥ 2 be integers with gcd(d, n) = 1. Let u ∈ Z0. We say that a
partition [a1, ..., ar] ∈ P(u) is bad if any of the following two cases holds:

(i) for all i ∈ {1, ..., r}, we have that gcd(ai, d) > 1;
(ii) for all i ∈ {1, ..., r} with gcd(ai, d) = 1, we have that n | ai.

We call the partition good otherwise. We let
Pbad(u) ⊂ P(u)

be the (potentially empty) set of bad partitions of nd− d− n.

We can now prove the main theorem of this paper, which answers Question 1.2 in certain
cases.

Theorem 3.6. Let k be any field. Let ϕ be a degree d ≥ 2 form on a finite-dimensional
vector space V over a field k. Suppose that ϕK is isotropic for some simple extension K/k with
n := [K : k] ≥ 2 and gcd(n, d) = 1. If Pbad(nd− n− d) = ∅, then ϕL is also isotropic for some
extension L/k with gcd([L : k], d) = 1, n - [L : k], and [L : k] ≤ nd− n− d, where a set D of
possible values for [L : k] is explicitly computable. Moreover, if a non-trivial solution for ϕK is
known explicitly, then L/k can be explicitly computed as well.

Proof. If ϕ is isotropic over k, we can take L = k. So, from now on, we assume that ϕ is
anistropic over k. Moreover, by Remark 2.5, we can also assume that ϕ is diagonal-full, since
otherwise it is already isotropic over k.

Since K/k is a simple extension, we let K = k(α) and let f ∈ k[t] be the minimal (irreducible)
polynomial of α over k. Since, by assumption, ϕk(f) is isotropic, it follows that there exists
some v ∈ V [t] such that ϕ(v) ≡ 0 mod f but v 6≡ 0 mod f . By the division algorithm, there
exist some w, s ∈ V [t] such that

v = fw + s

and deg(s) < deg(f) = n. Since
ϕ(v) = ϕ(fw + s) = fdϕ(w) + f(other stuff) + ϕ(s)

and since f | ϕ(v), it follows that f | ϕ(s). If s = 0, then f | v, which contradicts f - v.
Hence, s 6= 0. Let ϕ(s) = fg for some g ∈ k[t]. Since s 6= 0 and since, by assumption, ϕ is
anisotropic, we have by Lemma 2.9 that ϕ(s) 6= 0. It follows that g 6= 0. Hence, we have that
fg ∈ 〈D(ϕk(t))〉. Since ϕ(s) = fg and deg(s) < deg(f), it follows that

deg(f) + deg(g) = deg(ϕ(s)) < d deg(f) = dn,

that is, deg(g) < n(d − 1). Notice also that deg(g) ≥ 1, since otherwise we would get, by
Lemma 2.8, that d deg(s) = deg(ϕ(s)) = deg(f) = n, which is a contradiction to the fact that
gcd(d, n) = 1.

In the remainder of the proof, we aim to show that there exists an irreducible factor p of fg
of exponent λ coprime to d and with gcd(deg(p), d) = 1, n - deg(p), and deg(p) > 1, with the
goal of then applying Lemma 2.7 to it. Let the factorisation of g into irreducible factors be

g = g∗
r∏
i=1

pλi
i

where g∗ ∈ k× and, for each i = 1, ..., r, the distinct polynomials pi ∈ k[t] are monic and
irreducible, with deg(pi) =: ui and λi ≥ 1. Then

deg(g) =
r∑
i=1

uiλi < n(d− 1).



DEGREES OF CLOSED POINTS ON HYPERSURFACES 7

We claim that deg(g) ∈ Sd,n. Indeed, by Lemma 2.8, we have that deg(ϕ(s)) = d deg(s).
Since ϕ(s) = fg, it follows that deg(g) = −n+d deg(s). Since, moreover, 1 ≤ deg(g) < n(d−1),
it follows that deg(g) ∈ Sd,n, as claimed.

By Lemma 3.3, we then know that deg(g) ≤ max Sd,n = nd− n− d. Moreover, by Lemma
3.4, if deg(g) 6= nd− n− d, then we have that [λ1u1, ..., λrur, jd] is a partition of nd− n− d,
for some j ∈ Z≥1. Since, by hypothesis, Pbad(nd − n − d) = ∅, it follows that there is
some i ∈ {1, ..., r} with gcd(λiui, d) = 1 and n - λiui. In particular, for such an i, we have
gcd(λi, d) = 1, gcd(ui, d) = 1, and n - ui. This corresponds to an irreducible factor pi of degree
ui of g with exponent λi coprime to d. We notice that pi - f , since both f and pi are irreducible
and deg(pi) = ui 6= n = deg(f), since n - ui. Hence, pi is a monic irreducible factor of fg
of exponent λi coprime to d. By Lemma 2.7, this implies that ϕk(pi) is isotropic. By letting
L := k(pi) = k[t]/(pi(t)), we see that [L : k] = ui satisfies gcd([L : k], d) = 1 and n - [L : k].
Since deg(g) ≤ nd−n−d, it also follows immediately, by construction, that [L : k] ≤ nd−n−d,
as required.

In order to explicitly compute a set D of possible values for [L : k], we can do as follows. Let
[a1, ..., ar] be a partition of nd−n−d. For each ai with gcd(ai, d) = 1, potentially we could have
ai = uiλi, and thus ui could be any positive divisor of ai. Hence, for each ai with gcd(ai, d) = 1,
any positive divisor δ of ai with n - δ is a possible degree [L : k] for the extension constructed
above with the required properties, and we append any such δ to D. By considering all the
possible partitions of nd− n− d and appeding divisors δ to D as above, we thus obtain a set D
containing, by construction, the value of [L : k].

Finally, if we have an explicit non-trivial solution over K, then, in the above proof, we also
have an explicit v ∈ V [t], which implies that w, s are also explicit, and thus that g is explicit
as well. Then the factorisation g = g∗

∏r
i=1 p

λi
i into its irreducible factors is also explicit, and

we get all its irreducible factors pi with gcd(deg(pi), nd) = 1 and gcd(λi, d) = 1; for each such
factor, L = k[t]/(pi(t)) is explicitly computed. �

As an immediate corollary, we recover the following well-known result.
Corollary 3.7. Let k be any field. Let ϕ be a cubic form on a finite-dimensional vector space
V over a field k. Suppose that ϕK is isotropic for some quadratic extension K/k. Then ϕ is
already isotropic over k.
Proof. Here (d, n) = (3, 2) and nd − n − d = 1. Since the only partition of 1 is [1] and is a
good partition, we can apply Theorem 3.6 to conclude that ϕ is already isotropic over k, as
required. �

3.2. Improving Coray’s and Ma’s results. We now specialise Theorem 3.6 to the case when
(d, n) = (3, 4). An important application of this is an improvement upon the results by Coray
and Ma, as mentioned in the introduction.
Theorem 3.8. Let k be a field and let ϕ be a cubic form on a finite-dimensional vector space V
over k. If there exists a simple extension K/k with [K : k] = 4 such that ϕK is isotropic, then
there exists a finite extension L/k with [L : k] ∈ {1, 5} such that ϕL is isotropic.
Proof. Here (d, n) = (3, 4) and nd − n − d = 5. Any partition of 5 having a 1 in it is a good
partition. The only partition of 5 not involving a 1 is [3, 2], which is also a good partition.
Hence, by Theorem 3.6, there is some extension L/k with ϕL isotropic and gcd([L : k], 3) = 1,
4 - [L : k], and [L : k] ≤ 5. This leaves [L : k] ∈ {1, 2, 5} as possibilities. But, by Corollary 3.7,
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if [L : k] = 2, then ϕ is already isotropic over k. Hence, we can always find some L/k with ϕL
isotropic and [L : k] ∈ {1, 5}, as required. �

3.3. The case when d and n are both prime. When d and n are both prime, we can refine
the statement of Theorem 3.6. Indeed, when d and n are prime, the partitions of elements
u ∈ Sd,n are always good, as the following lemma shows.

Lemma 3.9. Let d ≥ 3 and n ≥ 2 be prime with gcd(d, n) = 1. Let u ∈ Sd,n and let [a1, ..., ar]
be a partition of u. Then there is some i ∈ {1, ..., r} with gcd(ai, nd) = 1.

Proof. We partition {1, ..., r} with the subsets
In := {i ∈ {1, ..., r} : n | ai, d - ai},
Id := {i ∈ {1, ..., r} : d | ai},
I := {i ∈ {1, ..., r} : n - ai, d - ai}.

If we can show that I 6= ∅, then we are done. We write

u =
r∑
i=1

ai =
∑
i∈In

ai +
∑
i∈Id

ai +
∑
i∈I

ai.

Assume, for a contradiction, that I = ∅. We write∑i∈In
ai = nc, for some c ∈ Z≥0. Since u ∈ Sd,n

and gcd(d, n) = 1, we have that u ≡ −n mod d, which implies that −n ≡ ∑i∈In
ai ≡ nc mod d.

Hence, since gcd(d, n) = 1, we have that c + 1 ≡ 0 mod d. But since nc ≤ u < (d − 1)n, it
follows that c < d− 1. Hence, we have on the one hand that 0 ≤ c ≤ d− 2 and on the other
hand that c+ 1 ≡ 0 mod d, which is a contradiction. Hence, I 6= ∅, as required. �

As a corollary of Theorem 3.6, we get the following refinement.

Corollary 3.10. Let k be any field. Let ϕ be a degree d form on a finite-dimensional vector
space V over a field k, where d is an odd prime. If ϕK is isotropic for some extension K/k with
n := [K : k] prime and gcd(n, d) = 1, then ϕL is also isotropic for some extension L/k with
gcd([L : k], nd) = 1 and [L : k] ≤ nd − n − d, where a set D of possible values for [L : k] is
explicitly computable. Moreover, if a non-trivial K-solution for ϕK is known explicitly, then
L/k can be explicitly computed as well.

Proof. This follows immediately by Theorem 3.6, since Pbad(nd−n− d) = ∅ by Lemma 3.9. �
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