DESCENT AND ETALE-BRAUER OBSTRUCTIONS FOR 0-CYCLES

FRANCESCA BALESTRIERI AND JENNIFER BERG

ABSTRACT. For O-cycles on a variety over a number field, we define an analogue of the classical descent
set for rational points. This leads to, among other things, a definition of the étale-Brauer obstruction
set for 0-cycles, which we show is contained in the Brauer-Manin set and is compatible with Suslin’s
singular homology of degree 0. We then transfer some tools and techniques used to study the arithmetic
of rational points into the setting of 0-cycles. For example, we extend the strategy developed by Y. Liang,
relating the arithmetic of rational points over finite extensions of the base field to that of 0-cycles, to
torsors. We give applications of our results to study the arithmetic behaviour of 0-cycles for Enriques
surfaces, torsors given by (twisted) Kummer varieties, universal torsors, and torsors under tori.

1. INTRODUCTION

1.1. Obstruction sets for rational points. Let k& be a number field and X be a smooth, proper,
geometrically integral variety over k. In order to investigate questions concerning the qualitative
arithmetic behaviour of the set X (k) of rational points on X, a well-known strategy is that of defining
so-called obstruction sets — namely, certain subsets of the set X (Aj) of adelic points on X that still
contain X (k) — and trying to exploit the more tractable local nature of these sets to study the specific
question at hand. Such sets can be used, for example, to determine whether X (k) = ) by refining
local-to-global principles, or to classify varieties according to their arithmetic behaviour. The theory
of obstruction sets in the context of rational points has been developed quite extensively over the last
several decades. In [Man71], Manin first constructed an obstruction set by using the Brauer group
Br(X) := H%(X,G,,) and class field theory to define what is now known as the Brauer-Manin set,
namely
X(a)P = N {(%)vegk € X(Ar) : Yoeq, nvy alw,) = o}.
aeBr X

Later, Colliot-Thélene and Sansuc [CTS87] defined a new type of obstruction sets known as descent
sets, based not on the Brauer group, but rather on the notion of torsors under algebraic groups. That is,
if G is a linear algebraic group over k and if [ : Y — X] € HL (X, G) is (the k-class of) a G-torsor over
X, then we can define the descent set associated to g as

XA = J gO7(Aw),
[T H (1,G)

where the G7-torsor ¢” : Y7 — X is the twist of the torsor g : Y — X by 7 (see [SkoO1, Ch. 2]). We
can also combine these two main types of obstructions together to yield potentially finer obstruction
sets. For example, the étale-Brauer set,

X(Ak)et,Br — ﬂ ﬂ U fT(Y’T(Ak)BI‘))7
F finite lin alg k-group [f:Y—X|eHL (X,F) 7T€HL (k,F)

can be obtained by considering the Brauer-Manin sets of all finite étale covers of X. Although the
obstruction sets defined using the Brauer group and those defined by using torsors have quite different
natures, there is sometimes a close interrelation between them — see, for example |[Sko01], [Har02], [Sto07],
[Dem09], [Sko09a], [Ball6|, [Cao20]. Unfortunately, despite the richness of the different obstructions
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available, the arithmetic behaviour of rational points on varieties is still not completely understood
in general: for example, in [Pool0] Poonen constructed a variety X over a number field k such that
X (Ag)BT £ () but X (k) = (), showing that even the finest obstruction set currently at our disposal, i.e.,
the étale-Brauer set, is not quite refined enough to capture the lack of rational points.

1.2. Obstruction sets for 0-cycles. Let us now consider the theory of obstruction sets in a different
context, namely, that of O-cycles on X, which can be viewed as generalisations of rational points. Given
a fixed integer d, the main object of interest is the set Zg(X) of O-cycles of degree d on X, that is, the set
of all formal Z-sums z := ) n,x of closed points # on X such that deg(z) := > . x n.[k(z) : k| = d,
where k(x) is the residue field of . Much in the same way as we did for rational points, we can ask
qualitative arithmetic questions about Z&(X) - for example, whether Z¢(X) = ). The basic strategy to
tackle such questions remains the same, that is, we consider subsets of the set Zg(X 4,) of adelic degree
d 0-cycles on X and try to exploit the local nature of these subsets to draw conclusions about Zg(X ).

There are two striking differences between the theory of obstructions for rational points and that for
0-cycles, however. First, while there is a wide range of obstructions sets and tools currently available for
rational points, the same cannot be said for 0-cycles. One key complication is that, in the definition of
0-cycles, several different field extensions need to be considered at once, thereby creating challenges in
generalising obstruction sets from rational points to this new context. Currently, the only obstruction
set that has been generalised is the Brauer-Manin obstruction |[CT95|, defined in a similar way as in the
context of rational points, but with the extra use of corestriction maps to deal with the different residue
fields of the support of the 0-cycles, namely

Z3(Xy, )BT = ﬂ Z Ny, Loy € Z4(Xa,) : Z Z Ny, inv, (coresg, (z,)/k, a(zy)) =0

a€Br X Ty €X g, vEQ, VEQE Ty € Xk,

The second difference concerns the arithmetic behaviour of 0-cycles. While, as previously mentioned,
even the finest known obstruction cannot explain all failures of the Hasse principle for rational points, the
qualitative arithmetic of O-cycles is, conjecturally, completely captured by the Brauer-Manin obstruction
— and thus much more well behaved. Indeed, Colliot-Thélene [CT95] conjectured that the Brauer-Manin
obstruction is the only one to weak approximation for O-cycles of degree 1 on any smooth, proper,
geometrically integral variety X over k (see also [KS86]). Colliot-Thélene’s conjecture is encompassed
by the following main guiding conjecture in the context of 0-cycles, which is known for a few cases (see
[Sal88], [Sai89], [CT99], [ESO8|, [Wit12], |[Lial3], and [CTS21, p. 383-4] for a detailed list of references)
but remains open in general.

Conjecture 1.1 (Conjecture (E)). For any smooth, projective variety X over a number field k, the
following complex is exact,

CHo(X) — [] CHy(X,) — Hom(Br X,Q/Z),
UEQk

where ~ denotes the profinite completion, and where CHy(Xy, ) coincides with CHy(Xy,) at finite
places and is a modification of the Chow group at infinite places (see [Wit12, §1.1] or [CT95, §1] for
further details).

1.3. Main results. The main aim of this paper is to fill in some significant gaps in the theory of
obstructions for O-cycles by defining an analogue of the descent set associated to a torsor for 0O-cycles.
Given a fixed d € Z and a fixed torsor ¢ : Y — X under a linear algebraic group G over k, we define the
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degree d descent set associated to g (see Definition [3.3)) to be

Zg(XAk)g = U g*,ad H H H H ZOAT(YAFL) ’

S finite non-empty (T CHY(L,G))res: ((A )reT, ) : LeS TeTL
t of finite field : 3 T/TEYL ) Les’
?ei(tgnsi(?rllseofek Tr # 0 finite for all L € S A, €Z for all 7,

Yries Lrer, ArlLikl=d

where

oad : > nyy — D> > D nys,ogr,)W)

yGY{w weNL: LeS TeTL weQ wlv yEYL"w

VEN
w‘v T€TL, LeS vEQ

and where g7 Y] — Xp, and sg,,: X, — Xj, are the natural maps. This set Z3(X,,)? contains
Z3(X) and, moreover, generalises the descent set X (A)? when d = 1. This set arises in a very natural
way that mimics the way in which the descent set for rational points is defined, once we take into
account the more complex structure of 0-cycles (see Sections [2[ and |3| for more details).

The definition of the descent set leads to, among other results, a definition of the étale-Brauer
obstruction for 0-cycles (Definition , namely

Z§(Xn )" = N () faa Il I1 I I z-o)™

S#0 finite set G finite lin. [f:Y —X] (TLCHY(L,3))Les (Ar)rer . LeS reTy,
ol inite fd Ml MErow e (x,6) Ty, # 0 finite (A €z for zﬁ e
extns o T )
forall LES 5 1es Srer, ArlLik=d

In Section (3], we show how the descent set and its variations involving the Brauer group are compatible
with an important equivalence relation on 0-cycles, namely the finite correspondences equivalence
relation, which gives rise to Suslin’s singular homology groups of degree 0; for proper varieties, Suslin’s
singular homology groups of degree 0 correspond to Chow groups.

More generally, these definitions afford the possibility of a more systematic theory of obstructions for
0-cycles, analogous to that of rational points. It also provides new potential avenues for investigating
Conjecture if Conjecture holds, it implies that the Brauer-Manin obstruction is the only one for
weak approximation for 0-cycles of degree 1 (see |[Lial3, Theorem A]); this, on the other hand, should
imply that the étale-Brauer set and the Brauer-Manin set for O-cycles of degree 1 are “equal” in the Chow
group, in the sense that, for any n € N, for any finite set S’ C Qj of places of k, if (2,), € Z3(Xa, )",
then there is some (%,), € Z¢ (X4, )°"P" such that 2, and Z, have the same image in CHy(Xy,)/n for
any v € S’

Equipped with our new definitions, in §5| we begin to transfer some of the tools and techniques used
to study descent obstructions to rational points into the 0-cycles setting. We do so in the spirit of some
of the ideas developed by Liang in [Lial3|. His strategy consists of trying to show that, under certain
conditions, if some arithmetic property (such as, for example, the Brauer-Manin obstruction being the
only one for weak approximation) holds for rational points for enough field extensions of finite degree
of the base field, then an analogous arithmetic property holds for O-cycles as well. In we extend
Liang’s strategy to torsors.

Theorem (Theorem . Let X be a smooth, proper, geometrically integral variety over a number field
k. Let f:Y — X be an F-torsor for some linear algebraic group F over k and with Y geometrically
integral. Let d be any integer. Assume that



(i) for any finite extension K/k and any T € H' (K, F), the quotient Br,,(Y)/ Bro(YZ) is finite,
and there exists a finite extension K. of K so that for all finite extensions L of K linearly
disjoint from K. over K, the homomorphism induced by restriction

resy /g : Bro,(Y)/ Bro(Yg) — B (Y])/ Bro(Y])

18 surjective;
(i3) for any finite extension L/k, we have that X (Ar)/0B ™ = 0 if and only if X (L) # 0 (respectively,
if Xp(Ap)TeBrer L0, then weak approzimation holds for Xp).

Then f-descent with unramified Brauer obstruction is the only obstruction to the Hasse principle
(respectively, weak approzimation) for 0-cycles of degree d on X.

In §6| we consider several applications of our tools, often in contexts in which there is deeper knowledge
of the obstructions that govern the existence and density of rational points. Firstly, building on work
by Ieronymou [ler21|, we get an application of the étale-Brauer set for Enriques surfaces — at least,
conditionally on a conjecture by Skorobogatov.

Theorem (Theorem . Let X be an Enriques surface over a number field k and let f : Y — X be a
K3 covering of X, i.e. a Z/2Z-torsor over X with Y a K3 surface. Let d € Z. Assume that Conjecture
holds. Then, for any positive integer n, if (2,), € Z3(Xa, )/ then there exists a global 0-cycle
2, € Z4(X) such that z, and (2,), have the same image in CHo(Xy,)/n for all v € Q.

As a further application, we study the arithmetic of 0-cycles in the context of what can be considered
as higher-dimensional generalisations of Enriques surfaces, where we look at the case where our torsors
are (twisted) Kummer varieties.

Theorem (Theorem . Let X be a smooth, proper, geometrically integral variety over a number
field k. Let f:Y — X be a torsor under some linear algebraic group F over k, where Y is a (twisted)
Kummer variety over k. Let d € Z be odd. Assume that Question [6.9 has a positive answer. Then
Z8( X, ) B2 £ 0 implies Z4(X) # 0.

We remark that the recent preprint [Ier22] by Ieronymou should remove both the condition that d
be odd and the need to restrict to the 2-primary part of the Brauer group. We nonetheless give the
theorem in this form, as its proof can potentially be applied to other situations.

Finally, we consider universal torsors and torsors under tori. In the rational points setting, it is
well-known that, if a universal torsor g : W — X exists, then X (Ag)? = X (A;)B"t [Sko01, Lemma 2.3.1].
In Theorem [6.10, we recover an analogous result for 0-cycles.

Theorem (Theorem . Let X be a smooth, proper, geometrically integral variety over k with Pic X
finitely generated as a Z-module. Suppose that a universal torsor g : W — X under some group G of
multiplicative type over k exists. Then, for any integer d € Z, for any positive integer n, and for any
finite subset S C Q. of places of k, we have that
(1) if (20)0 € Z&(Xa, )9, then there exists some (uy)y € ZE(Xa, )P such that z, and u, have the
same image in CHy(Xg,)/n for allv e S’;
(2) if, moreover, Br1(X)/Bro(X) is finite, then (z,), € Zd(Xy, )Pt implies that there evists some
(uy)y € Z4(Xp,)9 such that z, and u, have the same image in CHo(X},)/n for allv € S'.

Similarly, for torsors under tori we obtain the following result, in the spirit of a result by Harpaz and
Wittenberg (see [HW20, Théoreme 2.1})).

Theorem (Theorem [6.12)). Let X be a smooth, proper, geometrically integral variety over k. Let
f Y — X be a torsor under a k-torus T. Assume that Br X/Brg X is finite and that there is
some finite extension F'/k such that res;;, : Br X/ Bro X — Br(X;)/Bro(X;) is surjective for all finite
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extensions l/k linearly disjoint from F over k. Then, for any integer d € Z, for any positive integer n,
and for any finite subset S’ C Q. of places of k, we have that (z,), € Z&(Xa, )B" implies that there exists
some (uy)y € Z3( Xy, ) B such that z, and u, have the same image in CHo(Xy,)/n for allv € S'.

1.4. Notation and terminology. Let k be a number field and let k& denote a fixed algebraic closure
of k; we will take any finite extension of k to be inside k. Let €, denote the set of non-trivial places
of k and A, the ring of adeles of k. For a k-scheme X, write X := X Xgpecr Spec K for the base
change of X to the extension K/k, and X := X% A variety over k is defined as a separated scheme
of finite type over k. For a closed point x of a k-scheme X, let k(z) denote the residue field (over
k). The Brauer group Br(X) := H%(X,G,,) of a k-variety X is equipped with a natural filtration,
Bro(X) C Bri(X) C Br(X), where Brg(X) := im(Br(k) — Br(X)) and Bry(X) := ker(Br X — Br X).
For an abelian group A and an integer d > 0, we let A[d] denote the d-torsion subgroup of A. When d
is prime, let A{d} denote the d-primary part lim A[d"] of A.

2. A PARTITION FOR GLOBAL 0-CYCLES USING TORSORS

Let X be a variety over a number field k. Throughout this section, we fix g: ¥ — X to be a G-torsor
for some linear algebraic group G over k and a Y smooth k-variety. In this section, we generalise the
standard partition of X (k) using the torsor g : ¥ — X to 0-cycles. This partition will allow us, in
Section (3} to define the descent set Z¢(X (Ay))? and the étale-Brauer set Zg(X (Ay))°"B for O-cycles,
analogous to the corresponding sets X (Ay)? and X (A;)®%B" for rational points.

Before we are able to give the definition of the descent set for 0-cycles (see Definition , let us try
to motivate a bit how the construction arises by looking first at what happens for rational points. For
rational points, a standard result from the theory of torsors (see e.g. [SkoOl, p.22]) tells us that, using
the torsor g : Y — X, the set of k-rational points of X can be partitioned as

(2.1) X(ky=" [ g7k,
7'€Helt (k,G)
where ¢” : Y7 — X is the G™-torsor over X obtained by twisting g : Y — X by 7. Since Y7 (k) C Y7 (Ay),
we then get
Xky= J[ g07R)c U dO7(A) = XAy,
TeHL (k,G) reHL (k,G)
where X (Ay)9 is the g-descent set. The main goal of this section is to generalise the partition in
the context of O-cycles. In Definition we construct a set Z4(X)9 that is the analogue for 0-cycles
of the set ]_[TeHclt(kG) g"(Y7(k)) in (2.1)): in Proposition we indeed prove that Z¢(X) = Z3(X)9,
thus yielding the analogue for global 0-cycles of the partition . In Section 3] we then exploit this
partition for O-cycles in order to define the g-descent Zg(X A, )Y for 0-cycles (see Definition .

The natural motivation behind the construction of the set Z¢(X)9 — which, at first sight, might
appear a bit abstract — lies completely in the proof of Proposition given a O-cycle z € Zg(X ), the
points in supp(z) are rational points over their respective residue fields; hence, by using the partition
and grouping together the points in supp(z) with a same residue field L and a same pullback class
T€ HY(L,G) of [g: Y — X] € H'(X,G), we can decompose z as a collection of “scattered” 0-cycles,
whose degrees are compatible in a certain explicit way, living on (potentially) different Y;’s, for some
extensions L/k and 7 € HL(L,G) depending on supp(z) only. We can then use the “recombining’
map g, (defined in Definition to recombine these “scattered” 0-cycles into z. This shows that any
0-cycle in Z(X) is in Z§(X)9, and yields the very natural justification for all the objects and conditions
appearing in the definition of Z¢(X)9.

Let us now delve into the construction.

)



Definition 2.1. Let k be a number field and let k be a fixed separable closure of k. We let
Sk :={K Ck: K is a finite field extension of k}.

Recall that if z := ) nyy € Zo(Y), the pushforward of z is
2) =Y nyg(y) = > nylk(y) : k(g))g(y) € Zo(X).
yey yey
Definition 2.2. We define the “recombining” map

g.: ] 11 IT II Z(vi) = Zo(X)

S5C3 (TLCHY(L,G))res  LESTETL
S # 0 finite T, = () finite for all L € S

as follows. Let

z = Z nyY € H H H H Zo(YT).

yEYE Cgk (TLCHl(L G))LES LESTETL

T
TEIL Les S # 0 finite 77 £ () finite for all L € S

Then g, (z) is the 0-cycle on X given by

=D > > nylsrogp)y)

LeS el yeYy

=S5 Y (L) : ks o gE(w)](sz 0 97) (),

LeS €Ty, yeY]

where g7 : Y/ — X, and s;: X, — X are the natural morphisms.
The map g, is compatible with degrees of O-cycles in the following way.

Lemma 2.3. Fizx an integer d. Then we have a map

g [] I1 I1 IT II 2z (v) = zg§(x).
SC8k (TLCHY(L,G))res  ((Ar)rery) oo LESTETL

AL €EZ for all T,
2res 2rery, Ar[Lik]=d

Proof. Let

z = Z nyY € H H H H H ZOAT(YLT).
yeY, SC8k (TLCHY(L,G))Les ((AT)TETL)LGS: LeS T€Ty,

A€Z for all T,
2res 2irery Ar[Lik]=d

T€TL/ Les

Then, by definition of g,, we have that
=22 > mylL(y) : k(szogpu))sL(gL®))-
LeSTeTy yeY[
Therefore,
deg(g.(2) =Y > > ny[L(y) : k(sp(gr W))k(sLl9r(y))) : K]

LeS teTy yeY]

=22 2 mll:K

LeS €Ty yeYy

=3 S wylLy) < DL K

LeS TeTy, yeY]



=>S"STL kY nylL(y) - L)

LeS Tely, yeyY,
S I IAI
LeS €Ty,

where the fifth equality follows from the fact that the inner summation represents the degree of the
0-cycle Zyeyg nyy, which is by definition A., and the final equality is by definition of the integers
Ar. O

Definition 2.4. Let d € Z. The global descent set of degree d of X associated to g is

z§xy = J e 11 11 IT 11 z5 o)

SCSk (TLCHl (LvG))LES (A-,—) eT . LeS reTy,
S # 0 finite Ty, # 0 finite for all L € § (ATGZT fofzﬁis

ZLES ZTGTL Ar[L:k)=d
The following is the 0-cycles analogue of the partition ([2.1)).
Proposition 2.5. There is an equality of sets, Z&(X)I = Z4(X).

Proof. The forward containment is the content of Lemma [2.3] For the reverse inclusion, let z :=

3 ngx € Z4(X), and suppose that {z1,..., 2.} := supp(z). By the classical properties of torsors for
zeX

rational points (see [SkoO1, §5.3]), for each x; we take any closed point z} of Xj(,,) projecting to x;, and
we have the partition

de X)) = [T 6w (Wan k@)
oceH(k(z;),G)

Hence there exists some (unique) o; € H'(k(z;), G) such that x; lifts to some y; € Ykaél)(k(a;z)), which
we fix for each z; and which we can consider as closed points on Ykg(;i). Note that k(x;)(y;) = k(x;),
since k(x;)(yi) C k(x;) as y; is a k(x;)-point. So, if we consider the morphism

then the pushforward of y; € Zj (Ykg(;l)) is

(Sk(z:) © Gp(ap) )+ Wi) = (k@) (W) * k(Sp(ay) © Gy Wi))]i
= [k(xi)(yi) : k(xi)]xi
=x; € Zo(X)

Consider the set
M = {(k(z;),04) :i=1,...r} ={(L1,11),-..,(Ls,Ts)},
where L; € {k(z1),...,k(z;)} and 7; € {01, ...,0,}. We partition the set {x1,...,z,} as follows. The

points x; and x; with i # j belong to the same partition set Py .y if and only if L = k(x;) = k(z;) and

T = 0; = 0;. We write
S

{z1,...,2,} = u Pir, 7))

=1



For each (L;,7;) € M, define
A(Li,Ti) = Z nw[LZ(y) : Ll} = Z Ng,
2€P(L;,m;) TEP(L;,m)

where we recall that y denotes the fixed lift of = and the n, are the coefficients of the support of the
0-cycle z € Z¢(X). Then, for each (L;,7;), we have

A
(Lis73) (\/Ti
E ngy € % (Y7
TEP(L;m)

Let S :={L1,...,Ls}. For each L € S, we let Ty, := {7 : (L,7) € M}. Consider the tuple of 0-cycles

w = Z NypY = Z NyY

T€P(L; ) i€{l,...,s} TEP(L,r) reTL/ Les

We claim that g, (w) = z. Indeed, we have
S
g*(w) = Z Z n:c(sL,- ° QZ)*(Z/) = Z Ny = 2.
i=12€T(z, +,) x€supp(z)

Moreover, we claim that w is in

I1 I I T II 2o

SCSk (TLCHY(L,G))Les (Ar)rer LeS reTy,
S 75 @ finite TL 7£ @ finite for all L € S ZL (S Z T LA)L[E[fk]_d
€ TeTy, =T

To show this, we check that the condition on the degrees A(y, ..y holds. We have

oD AwnlL k=D Aw, Lk
LeS reTy, i=1
S i

=1 wePL; )

= Zn [k(z;) : K]

=degz

=d
Hence, the inclusion Z¢(X)9 O Zg(X) holds and thus Z¢(X)9 = Z§(X), as required. O
Remark 2.6. The subset of Z}(X)9 given by

eff | Ageff
ZXr" =e | I I Iz |,
TkCHl(k7G) (AT)TET]C: TET"?
Ty # 0 finite A,€Z for all T,
Z‘r AT:I

where we have taken S = {k} in Definition is equal to [ cp1p.) 9" (Y7 (K)). Indeed, any effective
0-cycle in ZOA T’eH(YT) which is not identically zero must have degree A, > 0. Thus for A, < 0, we have
ZOA T’eH(YT) = (). (Strictly speaking, when A; = 0 we need to also remove the identically zero 0-cycle;
we will be a bit imprecise and ignore this minor issue.) But the only way in which ZTeTk A =1 for
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A, > 0is if Ty = {7} for some 7 € H'(k,G) and A, = 1. Hence, we have

ff ff 1
Zy(X)P™ = g, I 2o
TeH(k,G)

One can check that 201 ’eH(YT) = Y7 (k). The result then follows by the definition of g,.

3. THE DESCENT AND ETALE-BRAUER SETS FOR 0-CYCLES

In this section, we extend the definitions from the previous section to the local setting and we define
the descent and the étale-Brauer sets for 0-cycles.

Recall that, for any variety V' over a number field k¥ and any integer d, the set of adelic O-cycles of
degree d of V is the subset Z§(Va,) of [Loeq, Z4(V,,) of O-cycles (2,), such that, for all but finitely
many v € {1, we have that z, extends to a 0-cycle over some model V — Spec(Oy, ) of V., — Spec(ky).
If V is proper, then Z§(Va,) = [Tyeq, Z6(Vk,)-

Let X be a variety over a number field k. For any integer d and any place v € ., we briefly recall
how the natural map res, : Z$(X) — ZJ(Xy,) is defined. For z := Y _y ngz € Z¢(X), we let

resy(z) = Z Z N (),
2E€X WEQy () w|v

where (z)y, € X (k(z)y) is the image of z under the natural inclusion X (k(x)) — X (k(z)y). For any
x € X, we have by e.g. [Neu99, Ch. II, Cor. 8.4] that

> k@) k] = [k(x) : k]
wEQk(z):ww

and thus

deg(z) =Y Y malk(@)w ko) = > nglk(z) : k] = deg(2).

T€X WEQy () wlv reX

Definition 3.1. Let X be a variety over a number field k. Let g : Y — X be a G-torsor over X, where
G is a linear algebraic group over k. We define the map

v | 1T IT II 200vi,) = Zo(Xa,)

SC8r  (TL,CH'(L,G))res LeSTETL
S # 0 finite T, = () finite for all L € S

as follows. We first observe that
Zviyc I 207)=1] I 207,
weNL vEQR weQ L w|v

Hence, an element g in the domain of g, ,q can be written as

j o= (((Zyeygw "y y>weQL:wv>uer>
eTL) pes
— <<<<Zyeygw Ty y)weQL:wlv> TeTL> > 7

LeS VEQ
and we define

Soad@ = (D). D D nylsr,o0r,)v)

LeSTeT, weQpwlvyeY] veQ
k

where gzw: YLTw — Xr,, and sp,, : X1, — X, are the natural maps.
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Lemma 3.2. Let X be a variety over a number field k. Let g : Y — X be a torsor under some linear
algebraic group G over k. Fix d € Z. Then,

gaat [[ ]I I [T IT 28 (vi,) = Z(x,).
SCTk (TLCHl(L7G))L65 ((AT)TGTL)LES: LeS T€TY,

ALEZ for all T,
2Les ZTETL Ar[L:k]=d

Proof. The proof follows in a similar manner to that of Lemma Let

Y= Znyy

YEey,
werwlv/ veq/ rery/ pes

be in the domain of g, ,4. Then, for each v € ), we have

deg(@na@) =3 50 S0 S mylLu(y)  kolse, (95, DIk (2., (9, (1) : o]

LeS €T, wey: w‘v yEYL

=33 > Y mlLu(y) ik

LeS €Ty, weQy:wlv yEng

= Z Z Z Z ny[Lw(y) : Lw”Lw : kv]

LeS 7eT, weQr wlv yGYI’:w

= Z Z Z [Lu @ Ky Z Ny[ Ly (Y) * L]

LeS €T, weQp:wlv yGYLTw

=D 2 A Y [Luth]

LeSTeTy weQ L w|v
Y Y A
LeS TeTy,
where the fifth equality follows from the fact that the inner summation represents the degree of the
0-cycle Zerg nyy, which is by definition A, the sixth equality comes from the fact that Zweﬂyw‘ ol Lw
ky] = [L : k], and the final equality comes from the definition of the integers A. O

Definition 3.3. Let X be a variety over a number field k. Let g : Y — X be a G-torsor over X, where
G is a linear algebraic group over k. Let d € Z. For any given finite non-empty set S C §, we define
the g-descent set of degree d of X associated to S by

ZO(XAk) = B« ,ad H H H H ZOAT(Y&—L)

(TLCH'(L,G))res (Ar)rery),oqr LESTETL
Ty, # (@ finite for all L € S A,€7Z for all T,

ZLES ZTETL Ar[L:k]=d
We define the g-descent set of degree d of X by
Zg(XAk)g = U Z(()i(XAk)%
SCSk
S # 0 finite

10



More generally, if G is a set of k-isomorphism classes of linear algebraic groups over k, then the
G-descent set of degree d of X is defined as

Zg(XAk)g = U ﬂ m Z(C)I(XAJC)%
SC3r GeG [gY—=X|eH (X,G)
S # 0 finite

Remark 3.4. In the above definition, the reason why we can take the union |J gcg, first, before
S # () finite

taking the intersection over the linear algebraic groups and torsors, and still have that Z¢(X) c Z4(X A )9

is the following: since the motivation behind the sets S comes from the residue fields of the points in

supp(z) for all z € Z¢(X), then, as the proof of Proposition shows, for any z € Zg(X) there exists

some S (depending on supp(z) only) such that, for any linear algebraic group G over k and any G-torsor

g:Y — X, we have

z€g, H H HHZOAT(YLT) )

(TLCHY(L,G))res ((Ar)rery),oqr  LESTELL
Tr, # 0 finite for all L € S A,€Z for all T,

2Les ZTETL Ar[L:k]=d
that is, the same S works for all linear algebraic groups and torsors. We note that the set Zg(X Ak)g, as
defined above, is potentially smaller than the set

M M U 2

GeG [g:Y - X]eH (X,G) SC3k
S # 0 finite

Remark 3.5. If we set d = 1, S = {k} in Definition and we restrict to effective 0-cycles only, then
Z&’eH(XAk)i = X (Ay)Y. Indeed, the proof follows the same argument as that of Remark

Definition 3.6. Let X be a variety over a number field k. Let g : Y — X be a G-torsor over X, where
G is a linear algebraic group over k. Let d € Z. For any given finite non-empty set S C §j, we define
the g-Brauer set of degree d of X associated to .S by

Z§(X0,)%"" = 8una I1 Il I I zo-o)™

(TLCHY(L,G))res ((AT)TeTL)LeS: LeS teTy,
Tr # 0 finite for all L € S A-€Z for all 7,

> res ZTETL Ar[L:k]=d

We define the g-Brauer set of degree d of X by

Zg(XAk)g’Br = U 8+ ,ad H H H H ZOAT (Y&—L)Br

SCTk (TLCHY(L,G))Les (Ar)rer . LeSteTy
S # 0 finite Ty, # 0 finite for all L € S (AT€Z for zﬁef

2Les ZreTL Ar[Lik]=d

The étale-Brauer set of degree d of X is defined by
r ,Br
Z8(Xa )™ = | N N Zie)E™

SCSr  F finite lin. alg. k-group [f:Y = X]|€H(X,F)
S # O finite
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The constructions above are all functorial, as the next proposition shows.

Proposition 3.7. Let X and Y be varieties over k and let ¢: Y — X be a morphism of k-varieties.

Let G be a linear algebraic group over k and let g: W — X be a G-torsor over X. If g: V = Y is the

G-torsor over Y obtained by pulling g: W — X back along ¢ : Y — X, then ¢ induces a map of sets
¢: Zg(YAk)g - Z[C)I(XAk)g'

In particular, we also have an induced map of sets ¢: Z3(Ya, )*HB" — Z4(X,, )BT,

Proof. Let (2,)y := (ZyveYk nyvyu) € Z4(Yy,)? and let
v v

(20)0 1= u((Z0)0) = Z Ny, bos(y0) | € Z5(Xa).

Yv Eka v

We claim that (2,), € Z§(Xa, ). Since (Z,), € Z&(Ya)9, there exist a non-empty S, (TL)res and
<(AU)06TL>TLES with 3y cs Syer, AolL : k] = d and O-cycles

g
N
g
8@

o 0 Ay o
€ | | | | Zye(VE,)
vgeVE LeSoeT
Lw we, o€TL/ Les L
that recombine to (Z,)y, i.e., for all v € Qy, we have

(3.1) =) Y Y Ay, (57, 0d7,)-(v]).

LeS oeTy weQp wlv vieVE

Now, since g: V S, ¥ arose as the pullback of g: W S, X, we have, for any L € S and o € T, the
pullback diagram

ve Ly we
(32) i o

Y? i> X7
Moreover, there is a commutative diagram

v, -t X,

(3.3) ng \LSL ;

y %, x

where 57, and sy, are the natural maps. Hence, by using the push-forward map
Ao . Ay
(3.4) Zy 7 (Vig,) — Zy(WE,),

the O-cycles (ngevf ng. vfu) .
w w

In particular,

push-forward to O-cycles (ng eve 0,97 (vg])) o € Z5e (Wg,)-
w w ’ welly,

Qr,

g*,ad Z ﬁgw¢%7*(vg) EZg(XAk)g‘
weQr/) rer/ Les
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Hence, it suffices to show that the O-cycles (((ng} eve ng, 1. *(vg)>weﬂ ) ) recombine to
w L T€TT,

LeS
(2y)y- Indeed, for all v € Q, we have

SN N Y a9 (sp, 097, ) (0, . (03)

LeS o€y weQp wlvvgeVy

=33 > ST A (sn. 097, 09D (v])

LeS oeTy weQy wlvvieVy

_ZZ Z Z Mg (5L © OL, © 97, )+ (V5)

LeS oeTr, weQy: w|v vg, GVU

=S5 >3 A9, (6k, 051, 07,)4(0])

LeS oeTr, weQy,: w|v vg EVfw

=t | DD D > 7,6, 087, (v7)
LeS oeTr, weQly,: w‘v U“EV"w
:¢kv,*(2v)

=Zu,

where the second equality follows from , the third from , and the fifth from .

For the functoriality of the étale-Brauer set, it suffices to notice that if (2,), € Z¢(Yy)°“P", then there
exist a non-empty S of extensions of k£ such that, for any finite linear algebraic group F' over k£ and any
F-torsor f: V =Y, we have

(211)1) € %*7ad H H H H ZOAT(V&—L)Br

(T, CH'(L,F))Les (Ar)rer . LeSrely
Tr # 0 finite for all L € S (ATGZ forLé)ﬂLleTS:

Yres 2rer;, Ar[Lik]=d

Let (20)y := ¢«((20)0) € Z&(Xa,). We claim that (2,), € Z¢(Xa, )"
If f: W — X is any F-torsor and f: V — Y is the pullback of f along ¢ : ¥ — X, then

(Zp)y € Zg(YAk)g’Br. Hence, by the functoriality proof above and using the fact that the Brauer-Manin
set construction is also functorial, meaning that the push-forward map in (3.4)) induces the map

2 (V)P T 2m wg, )P,
we have that
(20)0 € Z3(Xa, ) L7
But since this is true for any finite linear algebraic group F' over k and any F-torsor f: W — X, we
have that
(20)0 € N N Z8(Xn )5 € Z§(Xa )",
F finite lin. alg. k-group [f:Y —X]cH!(X,F)
as required. O

Proposition 3.8. Let X be a variety over a number field k. Let g : Y — X be a G-torsor over
X, where G is a linear algebraic group over k. Then Z(Xa, )9 C Z§(Xa,)®". In particular,
Z3(Xa, )P C Z§ (X4, )P
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Proof. Let x € Z§(Xa,)?"". This means that there exists some

g = Z Ny Y € H H ZOAT(Y}(L)B

yeY;] LeS TeTY,
Lw we, T€TL/ Les

for some finite S # ), some tuple of non-empty finite sets (77, C H'(L,G))Les, and some tuple of
integers ((Ar)rery, )res with Y pco[L i k] cp, Ar = d, such that

=ga@={ D> D D nylsp,ogr,)«v)

LeS T€T, YT
eSTelL weQy :wlvye veQy,

In particular, we remark that, for any 7 € T, we have that, for any 8 € Br(Y[),

Z Z Ny NV, COTE€SL (y)/Ly, (B(y)) = 0.

weNy, yEYZw

We need to show that x € Z§(Xa,)B". Let v € Br X. Fix L € S and 7 € Ty. Let v, := resy, /x(7) €
Br(Xg,), a = s7_(mw) € Br(Xy,), and (97 )*(a) € Br(Y] ). Then

0= Z Z Ny INVy, COTES L, (4)/ L., ((gzw)*(a)(y))

weRy, yEYLTw

=D D myinvicoresp, g7 ()L, (COYGSLw@)/Lw(gzw(y)) ((QEM)*(Q)(@/)))

weN yGYEw
= > Y mylLu(®) : Lulgr, ()] invy, COTESL, (g7 (4))/Lu (9L, (1))
wey, yEYZw

T

=D > > mylluw®) s Lulr, )] invy coresy, g7 (/L. (51, (70))(9L, (1))

vEQE weQ L wv yGYT
=D > > myllw®) : ku(se, (95, 1)) inve corese, (s, 7. @) ke (Vo(52, (9L, (9))))
vEQE weEQ L :w|v erL
where in the third equality we have used restriction-corestriction for the extension Ly (y)/Lw (97, (¥)),
in the fifth equality we have used the commutative diagram

COTESLw (9], (¥))/Lw

Br(Spec(Lw (g7, (1)) s » Br(Spec(Ly)) e, Q/zZ

COTES Ly (g7 (1))/ku(sLy, (9T, (0)) COTESLy, /ky =

COTESky (s, (97, (8))/ko invy
Br(Spec(ky (5., (97, (%)) : Br(Spec(ky)) = » Q/Z

together with restriction-corestriction for the extension Ly (g7 (y))/kv(sL, (97, (y))). But then, when

considering (g, .q(y),7)BM, We get

(@uaa @ VB =D > > > D mlL ko(sL(9L,, ()] invy coresy, (1 (o7 ) /k0 (Vo(52(91., (1))))

LeSTeTL vEQL weQ wlv yEY"

=>. 2.0
LeS TeTy,

=0,
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that is, © = g, ,q(9) € Z§(Xa,)?", as required. O

Remark 3.9. For rational points, the g-descent set X (Ay)Y can be also written as
(3.5)
U 97 (Y (Ap)) = {(z0)ven, € X(Ag) : o € HY(k,G) st.res,(0) = [gk_vl(acy)] Ve Q).
ceHL (k,G)

In our construction of Z¢(X,, ), we have generalised the left-hand side of (3-5). However, it is not
clear, in general, how to generahse the right-hand side of (| . ) to 0-cycles. Nonetheless, When G is
commutative, we have that HY, (k,G) is a group and not just a pointed set. Hence, in this case, using the
same ideas as in the construction of Z§(X,, )P (i.e. using natural commutative diagrams, corestriction

maps, and the fact that H'(k,, G) is a group for each v € €, implying that we can add its elements
together), we can define the set

Z§(Xa,)? = { ( Z Ny, :rv) € Z§(Xa,) : 3o € H'(k,G) s.t. res,(0) = Z Ng,, COT€S), (z,)/ky ([g;}(xv)]) Yove Qk} ,

Ty EXp,, Ty EXp,

which is a clear generalisation of the right-hand side of (3.5)). It is natural to ask, in this context, what
the relationship between Zg¢(Xy, )9 and Z&(X4, )9 is.

Proposition 3.10. Let X be a variety over a number field k and let g : Y — X be a torsor under a
commutative linear algebraic group G over k. Let d € Z. Then Z$(Xy, )9 C Z§(Xa, ).

Proof. Let (sz ex,. N, xv) o € Z4(X4,)9. Then, by definition, there exist a non-empty finite set
v v k

S of finite extensions of k, a non-empty finite set T;, C HL (L, G) for each L € S, a tuple of integers
((Ar)rery,)res satisfying > 7 o[L : k] > cr, Ar = d, and adelic O-cycles (Zy;ng ny;y;> €

weN],
Zg (V) with

(36) Z Z Z Z ny SL OgL Z Ny, Loy,

LeS €T, weQy wlv yweYTw Ty € X,

for any v € Q. Let a:=[g: Y — X]| € HL(X,G); for any extension K/k, we denote by ax the image
of a under the restriction map resgy, : Hy (X, G) = Hy (Xk, G).

For any yy, € Y7 ~such that sy, (97, (vi,)) = v, let 4, € Y -y be an Ly, (y;,)-rational point above
yr, let Ty = gzw(y;) € Xp,(yr), and let Ty 1= sp(yry/ky (20) (Tw) € Xiy(ay)> Where S (yr)/k(w)
Xrwwr) = Xky(z,) 18 the natural map. Then &, € X, 47y is an Ly (y;,)-rational point above 7, €
Xky(zy)» Which, in turn, is a closed point above z, € X, .

Since

Vi)

Ly () (Fw) = TOSL (47 ko () (k) ()
it follows, using also restriction-corestriction, that

COYESL ., (yz,)/ko (aLw(yL)(jw)) = [Lw(y;) : k‘v(l‘v)] COTCSE, (24)/ ko (akv(mv)($”))
= [Lu(yg) : ko(w)] coresy, @, /k, (o, (22)) -
But we know, by construction, that oy, ) (Fw) = resy, ,7)/0(7). Hence,
(3.7) coresr, (yz)/k, (181, (y7)/L(7)) = [Lu(ys,) : ku(@o)] coresy, o)k, (o, (z0)) -
Now, for each z, € X}, and for each L € S and 7 € TL, we let
Vi (20) := {yy € YL < 81, (92, (Y0)) = 20}
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Then, using (3.6)), we get

> e, coresy, o)k, (O, (T0))

Ty € Xk,

N5 Y Y Y ng Lyl « ke(w)] coresy, o) m, (i, (20))

LeS €Ty, weQr wlv 2o € Xy, yL,EYT (Tv)

D2 > 2 2 mpeoresy gy, (resn,ag)/n(7)

LeS €Ty, weQr wlv 20 €Xg,, yL,EYT (Tv)

e NSNS Y Y L) ¢ Luleoresy g, (resp, ()

LeS 7€Ty weQp w|v 2o €Xk, yLEY] (xv)

= Z Z Z coresy, /k, (resL /L Z Z ny;[Lw(y:u)5Lw]

LeS €T, weQyp wlv Ty €X gy, YL, €Y (w0)
T .
= g E E coresy,, /k, (rest/L (7')) E Ny (L (V) * Liw]
LeS 7eT, weQr wlv Y €YY
=A,

= Z Z Ar Z COTeSy, /k, (rest/L(T)).

LeSTeTy, weN 1, :wlv

From the commutative diagram

@wGQL:wh) rest/L

Helt(LvG) @weﬂL w|vH (vaG)

cores
L/k‘/ J/Zwlu COTeSL, /ky

HL (K, G) i HY (ky, G),

we deduce that ZwGQL:w‘U coresy,, /i, (rest/L(T)) = resy, /k (coreSL/k (7)) . Hence,

Z N, COTESE, (2.)/ky (o, () Z Z A, Z coTesy,, /k, (rest/L(T))

Ty €Xp, LeS reTy, weQ L wlv

Y sy eore . 7)

LeS TGTL

= resy, /k Z Z A coresy,/y; (T)

LeS TeTy,

o= Z Z Ay coresy i, (T) € HY (K, G),

LES ’TETL

It follows that, if we let

then, for all v € i, we have that

reskv/k(a) = Z N, COTESE (2, /k, (Ck, (x4)),

Ty € Xk,

that is, (Zx ex, nmvxv) o € Zg(XAk)g, as required. O
v v e,

It is however much less clear whether the other inclusion Z§(X,,)? C Z¢(Xa,)? should hold at all.

3.1. Descent obstruction and compatibility with Chow groups and Suslin homology. When
considering the Brauer-Manin set for O-cycles, if X is a proper variety over a number field &, then we
know that the Chow group is compatible with the Brauer-Manin pairing, meaning that the Brauer-Manin
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pairing (—,)ga: Z4(Xa,) % Br(X) — Q/Z induces a pairing

(—)Bu: J] CH§(Xk,) x Br(X) - Q/Z,
VEQ
where CHE(X},,) denotes the set of O-cycles of degree d on X}, modulo rational equivalence. It turns
out that when X is proper, the descent set also induces an obstruction set modulo rational equivalence.
In order to show this, we first need the definition of Suslin’s singular homology of degree 0.

For any varieties V' and W over a field K with V connected, we define the group of finite correspon-
dences from V to W over K, to be the group Cor(V, W) whose elements are formal Z-linear sums of
integral closed subschemes Z of W x g V that are finite and surjective over V. For example, if X is a
variety over a field K, then Corr(Spec K, X) is just the group of 0-cycles on X.

Consider the points 0 and 1 on the affine line A}( For a variety X over K, we define a map

Corr(Ak, X) — Corr(Spec K, X)
S 02 o S ns(2) - G(2)),
Z Z

where, if A € AL is a K-point, then ¢}(Z) denotes the pullback of Z C X X A}, along the inclusion
tx: X = X xg Al given by z + (z,)). Since the composition Z C X xx AL, — AL is finite and
surjective, we can view ({j(Z) — ¢j(Z) as a 0-cycle on X. We define the Suslin’s singular homology group
of degree 0 on X to be the group ho(X) of O-cycles on X modulo the equivalence relation generated by
those 0-cycles on X coming from finite correspondences from AL to X under the map above. Suslin’s
singular homology of degree 0 behaves well in the following sense (see [ES08]):

(i) if X is a proper variety over a field K, then ho(X) = CHy(X);

(ii) Let X and Y be varieties over a field K. Then, for any k-morphism f: Y — X, the pushforward
map fi: Zo(Y) — Zp(X) induces a morphism f,: ho(Y) — ho(X);

(iii) the degree map deg: Zy(X) — Z for 0-cycles factors over the map s, : ho(X) — ho(Spec K) =Z
induced by the structure morphism s: X — Spec K.

Even though we will not use it in this paper, we mention here a useful moving lemma for 0-cycles
modulo the finite correspondences equivalence, analogous to [CT05, Complément, §3].

Proposition 3.11. ([Sch07, Prop. 5.6]) Let X be smooth Noetherian scheme over a field k and let U
be a dense open subscheme in X. Then the natural homomorphism

1S surjective.

If d € Z and X is a variety over a field K, we let h3(X) denote the subset of ho(X) of degree d
elements, i.e., h3(X) is the inverse image of d under the degree map deg: ho(X) — Z.

Definition 3.12. Let X be a variety over a number field k. Let g: Y — X be a torsor under a linear
algebraic group G over k. Let d € Z. We define the g-descent set of degree d of X modulo finite
correspondences to be the set

hd(Xay)? == . aa 11 11 IT IT ( I1 »o-vi)

(TLCHl(L7G))L€S ((AT)TETL)LES: LeS TeTy, wey,
Ty, # 0 finite for all L € S A7 for all 1,

Yres Xrer, Ar[Lik]=d
Remark 3.13. If X is proper, then hg(XAk)g = hg(XAk)g N HvEQk CHg(ka)-
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Proposition 3.14. Let X be a variety over a number field k. Let g : Y — X be a torsor under a linear
algebraic group G over k. Let d € Z. Let (z,)y € Z3(Xa,)?. Let [(20)0] == ([20]), € [1, h3(Xk,) be the
class of (), under the finite correspondences equivalence. Then [(z,)y] € hd(Xa,)9.

Proof. Since (z,)y € Z3(X4,)?, by definition there exist a non-empty finite set S of finite extensions of
k, a non-empty finite set Ty, C HL (L, G) for each L € S, a tuple of integers ((A,)-er, )Les satisfying
YoreslL i kY er, Ar = d, and adelic O-cycles (ny vy nyay;) o € ZOAT (Yy,) with

w w welly,

SN N Y n(sn, 007,)h) =z

LeS teTr, weQy:wlv yZJEYLTw

for any v € Q.
For each L € S, each 7 € T, and each w € {2, consider the class

Ar
ST ongun| = Y0 nylynl € RET(YL)

Yo GYL"w Y7, GYZw

of Z% evr Mg, yi, € ZOAT (Y7, ) under the finite correspondences equivalence. It follows that

8+.ad > ngu = > > my(sp,ogn,)«(lv))

yrey;y LeS €Ty, weQr, :wlv yL, €Y,
w Law 'LUEQL TeTT, LES ~ l v Lw

Since the push-forward map (sr,, o g7 )«: Zo(Y[, ) — Zo(Xk,) induces a map
(L., 091, )« ho(YL,) = ho(Xg,),

we have that (sr,, 0 g7 )«([yn]) = [(sL, © 97, )«(y5,)]. Hence, for each v € €, we have

vl LeS £uT€eTy, weQpwlv 2uyr YT Tyl \SLy Ly /*\Jw

2] = [Sres Soer, Swcopato Suevy, M (51 0 97,):(07)
— ZLES ZTGTL ZwEQL:w\U ZyLEYZw Nyr [(SLU, o gzw)*(y;)]
= ZLGS ZTGTL ZwGQL:w\v Zy;}EYZw Nyr, (SLw o QEU,)* ([?/171—)])

B

It follows that [(2,),] € hd(X4, )9, as required. O

Suslin’s singular homology of degree 0 is also compatible with the unramified Brauer-Manin pairing,
as the following proposition shows.

Proposition 3.15. Let X be an integral variety over a number field k. Let B C Bry,(X) be a non-empty
subset of the unramified Brauer group of X. Let d € Z. Then the Brauer-Manin pairing for 0-cycles
(= —)BMm: 11, Z3(X,) x B — Q/Z is compatible with the finite correspondences equivalence and thus
induces a paring

(= —)par: ] PG(Xk,) x B— Q/Z.

Proof. In order to show that the Brauer-Manin pairing is compatible with the finite correspondences
equivalence, it suffices to show that, for any a € Br X, for any v € ), for any elementary finite
correspondence Z C X, x A}, , we have that the evaluation of « at the 0-cycle ¢§(Z) — 15(Z) € Zo(Xk,)
is 0, where we recall that ¢y : X, — X, X A}% is the inclusion x — (z, \).

Fix o € Br(X), a place v € Qy, and an elementary finite correspondence Z C Xy, x Aiv. By definition,
the projection of Xy, x A}CU onto its second factor induces a finite surjective morphism f: Z — Alv, while
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projection onto its first factor induces a morphism p: Z — X, . We follow, with some modifications,
the proof of |[CTS21} Proposition 6.4.2].

Since Z is integral and A}% is a normal, locally Noetherian scheme of dimension 1 over k,, and since
f is surjective (and thus non-constant), it follows that f is flat (see e.g. [Liu06, Chap.4, Cor.3.10]).
Moreover, since A}% is locally Noetherian and f is finite and flat, it follows from [TSPA| Tag 02KB]
that f is finite and locally free of constant rank (since the rank is constant on irreducible components).

Let 20 € Zo(Z) and 21 € Zy(Z) be the 0-cycles associated to the finite schemes Spec(Ag) = f~1(0)
and Spec(A4;) = f71(1), respectively. Then }(Z) = p.(2)) € Zo(Xg,), for X € {0,1}. Let o, :=
resy, /p(@) € Br(Xy,) and let 3 := p*(aw) € Br(Z). Then, by [CTS21, Lemma 6.4.1], we have

<,3, ZA)BM = Coresy4, /k, (,BA/\) S Br(kv),
for A € {0,1}. Since f is finite and locally free of constant rank, by |[CTS21, Proposition 3.8.1] we have
that
cores 4, /k, (Bay) = (coresz a1 (B), ) par,
for A € {0,1}. Since k, is a perfect field, the natural map Br(k,) — Br(A} ) is an isomorphism by
[CTS21, Theorem 5.6.1(viii)]. Hence, coresz 1 (8) € Br(A}, ) = Br(k,) is a constant class, and thus

<B:ZO>BM = (B, z1)BMm, that is, <ﬁ,2’0 — z1)pym = 0. Finally, since 8 := p*(«y,), from ’CTSQL (6.2)] it
follows that

0= (p*(aw), 20 — 21)BM = (. px(20 — 21))BM = (@, 1)(Z) — {(Z)) B,

as required. O
In light of Proposition [3.15] we make the following definition.

Definition 3.16. Let X be a variety over a number field k. Let g : Y — X be a torsor under a linear
algebraic group G over k with Y geometrically integral. Let d € Z. We define the g-unramified-Brauer
set of degree d of X modulo finite correspondences to be the set

Brps

h(Xa, )PP = g 11 11 IT I { II »-0v)

(TLCHY(L,G))res (Ar)rery) e LESTETL \welly
T, # 0 finite for all L € S A,€Z for all T,

2Les ZTGTL Ar[L:k]=d

Remark 3.17. If X is proper, then hd(Xy,)9P ™ = hd(Xa, )9P" N [[,cq, CHI(X}, ).

’UGQk

Proposition 3.18. Let X be a variety over a number field k. Let g : Y — X be a torsor under a
linear algebraic group G over k with Y geometrically integral. Let d € 7. Let (zy), € Zg(XAk)giB”".
Let [(zv)v] == ([20]), € 1, hd(Xk,) be the class of (2y), under the finite correspondences equivalence.
Then [(zy)y] € h3(Xa, )9Br.

Proof. The proof is very similar to that of Proposition [3.14] once we note that Suslin’s singular homology
of degree 0 is compatible with the unramified Brauer group. O

4. WEAK APPROXIMATION FOR 0-CYCLES

Let Y be a smooth, geometrically integral variety over a field k. Recall that, when Y is proper, the
Chow group CHy(Y') of Y is the quotient of Zy(Y') by the subgroup generated by all O-cycles of the
form ¢.(dive(g)), for all ¢ : C'— Y proper morphisms over k from normal integral k-curves C' and for
all g € k(C)*. In other words, CHy(Y") is the quotient of Zy(Y') by the subgroup of 0-cycles rationally
equivalent to zero.
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Now let X be a smooth, geometrically integral variety over a number field k. While weak approximation
for 0-cycles is usually defined, when X is proper, by using the Chow groups CHy(Xy, ) for each v € ),
in this paper we will need a slightly more general definition which works for non-proper varieties as well.
Instead of the Chow groups CHg (X}, ), we thus define weak approximation by using the Suslin’s singular
homology groups ho(Xg,). We note that, when X is proper, our definition of weak approximation
coincides with the classical one.

Definition 4.1. Let X be a smooth, geometrically integral variety over a number field k. For any
d € Z, we say that X satisfies weak approzimation for 0-cycles of degree d if the following condition
holds: for any positive integer n and for any finite subset S C €, of places of k, if (2,), € Z§(Xa, ), then
there exists a global 0-cycle z, s € Zg(X ) such that z, g and z, have the same image in ho(Xy,)/n for
any v € S. We can also refine the notion of weak approximation by replacing the set Zg(X A,) by some
potentially smaller set Z§(Xa,)* still containing Z¢(X), where w is some “obstruction” compatible with
Suslin’s singular homology.

We will need the notion of two 0-cycles being sufficiently close.

Definition 4.2. (|Lial2, Définition 1.1(3)]) Let k& be a number field and let v € Q) be a place of v.
Let Y be a variety over k,. Given a closed point y € Y, we fix a k,-embedding k,(y) — ky, so that
we can view y as a ky(y)-point of Y. Let ¢’ € Y be a closed point and let U, C Y (ky(y)) be an open
neighbourhood of y with respect to the v-analytic topology. We say that ' is sufficiently close to y (with
respect to Uy) if y' has residue field k,(y') = k,(y) and if we can choose a k,-embedding k,(y') — ky
such that 3/, when viewed as a k,(y)-point of Y, is contained in U,. The general definition for two
O-cycles z and 2’ on Y of the same degree to be sufficiently close (with respect to, say, a system of
open neighbourhoods of the points in the support of z) is obtained by extending Z-linearly the above
definition for closed points.

Remark 4.3. Let X be a smooth variety over a number field k. Let o € X and let (2,)ycq, € Z3(Xa,).
By the the fact that the evaluation of « at z, is locally constant for all v € Q, we deduce that, for each
v € Qy, there is a system of open neighbourhoods of the support of z, such that, if 2/ € Zg(ka) is
sufficiently close to z, with respect to this system of neighbourhoods (or smaller neighbourhoods), then
the evaluation of v at 2/ is the same as the evaluation of a at z, (in fact, it is the same “point-wise”,
for each point in the support of z)).

We recall that, in characteristic 0, effective 0-cycles z, of degree d on X}, are in one-to-one correspon-
dence with k,-points [z,] € Sym?(X},)(k,) on the symmetric product. Let z, be a O-cycle of degree d
on Xj,. Then z, can be written uniquely as z, = 2,7 — 2, where z;" and z;, are effective 0-cycles of
degrees, say, d4 and d_, respectively, with d = d; — d_. Hence, z, corresponds to a pair of k,-points
([, [25]) € Sym®* (X, )(ky) x Sym?= (Xy,)(ky). It turns out that, under the above identifications, if
two 0-cycles are sufficiently close, then they also have the same image in ho(Xy,)/n.

Proposition 4.4. Let X be a smooth variety over a number field k and let v € Qi be a place of k. Let
d € Z and let z, € Zg(ka). Letn € Z~qo. There is a system of open neighbourhoods of the points in the
support of z, such that, if 2 is sufficiently close to z, with respect to this system of neighbourhoods (or
smaller neighbourhoods) of z,, then z, and zl have the same image in ho(Xy,)/n.

Remark 4.5. Let k be a number field. Let S C i be a non-empty finite set of places of k. Let X
be a smooth, geometrically integral variety over k. Let B C Br™ (X)/Brg(X) be a finite non-empty
subset and let f3q,..., 5, € Br""(X) be a complete set of representatives for B. Let n € Z-o. Let
(20)v € Z&(Xa, ). Then, it follows from Remark and Proposition that, for each v € S, we can
find a system of open neighbourhoods of the points in the support of z, such that, if 2/, € Z4(X},)
is sufficiently close to z, with respect to this system of neighbourhoods (or smaller neighbourhoods),
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then z, and 2/ have the same image in ho(Xg,)/n and they have the same evaluation at each f3;, for
1=1,..,r.

The proof of Proposition follows immediately provided that we have an analogue of Lemme 1.8 of
[Wit12] for Suslin’s singular homology groups. The authors are extremely grateful to Olivier Wittenberg
for providing a proof of the following propositions, analogous to [Wit12, Lemme 1.8].

Proposition 4.6 (Wittenberg). Let k be a number field and let v € Qi be a place. Let X be a smooth
quasi-projective variety over k,. For any d € Z, and any n € Z~q, the map

Sym$%,. (k) = ho(X,)/n

is locally constant.

Proof. For notational convenience, we will let X := X, and k := k,. We will prove the result by
induction on the dimension dim(X). If dim(X) = 0, the result follows trivially. So assume that
dim(X) > 1 and that the statement of the theorem holds for any smooth variety over k& of dimension
strictly less than dim(X).

Let X C PY be a smooth compactification of X (noting that dim X = dim X)andlet Y := X — X.
Let z be an effective 0-cycle of degree d on X. Let Z := supp(z) C X be the support of z, viewed as a
reduced scheme. By replacing the embedding X c }P’{CV with its composition with a sufficiently-high-
degree Veronese embedding if necessary |[AK79, (7)], we can assume that there exists a linear subspace
L C PY of codimension dim(X) — 1 containing Z and such that the scheme L N X is a smooth curve
and the scheme L NY is étale over k. Let D C L be a linear subspace of codimension 1 in L such that
DN Z =0 and such that the scheme D N X is étale over k. Let H C P]kv be a linear subspace with
dim(H)=dim(X)—1and HND =0. Let 7: X' — X be the variety obtained by blowing-up X along
DN X and let p: X' — H be the projection morphism with centre D in IP’ng . Observe that since LNY
is etale over k, one can ensure that, when choosing D, D NY is empty so that Y C X’.

The fibres of p are the intersections of X with the linear subspaces of P of codimension dim(X) — 1
containing D. Hence, there exists a point h € H (k) such that LN X = p~t(h). Since LN X is a smooth
curve, there is an open set V C H with h € V and such that the induced morphism p: p~1(V) — V
is smooth, projective, and of relative dimension 1. By shrinking V' if necessary, we can assume that
p:p 1 (V)NY — V is an étale morphism.

Since p is smooth at the points of Z and since Z N D = (), there exists a closed subvariety F' C p~1(V)
with Z C F and F étale over V at the points of Z (c.f. [Gro67, p. 193]). By shrinking the open set V' if
necessary, we can assume that F'is étale on V', so that F' is a smooth variety. By Hironaka’s theorem,
there is a smooth compactification F C F such that the inclusion F C X’ extends to a morphism
¢ : F — X'. The smooth variety F' — ¢~1(Y) has dim(F — £~'(Y)) < dim(X). Hence, by our inductive
hypothesis, there is an open set Ur C Sym%_Fmg_l(Y)(k) C Sym%_g_l(y)(kz) containing z, viewed as a

k-point of Sym?(X), such that the map Sym%is_l(y)(k:) — ho(F — €71(Y))/n is constant on Up. By

composing this map with the morphism ho(F — £¢~1(Y))/n — ho(X)/n induced by the restriction of &
to I' — ¢71(Y), we deduce that the map

(4.1) Up — ho(X)/n

is also constant.

Let K/k be a finite Galois extension containing all the residue fields of the points in supp(z) and
let G := Gal(K/k). Since F' is étale over V, by the inverse function theorem [Ser92, Part II, Ch. III,
§9, Theorem 2] there exists an open neighbourhood V C V(K) of h and, for each z € Z(K), an open
neighbourhood B, C X(K) of z such that B, N Y (K) = (), the sets B, are pairwise disjoint, and the
maps B, N F(K) — V induced by p are isomorphisms of analytic varieties.
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Let s, : V — B, N F(K) denote the inverse isomorphisms. By shrinking V and by replacing each B,
with the intersection (,cq 0~ (B, (y)) if necessary, we can assume that o(B;) = By, for all o0 € G
and z € Z(K). Hence, V and B := {J,c (k) Bo are stable under the action of G. Moreover, for each
x € Z(K), By is stable under the action of the stabiliser G, C G of x. Additionally, for each x € Z(K),
since s, ! is Gy-equivariant, it follows that the map s, is G -equivariant as well.

Let ¢ : B — F(K) be the union of the maps s, op : B, — F(K). Then ¢ is a continuous G-equivariant
map, and thus induces the continuous and G-equivariant map between the symmetric products of these
topological spaces

Sym?(y) : Sym?(B) — Sym?(F(K)).
Since the subspaces of Sym?(X (K)) and of Sym?(F(K)) given by the G-invariant elements can be
identified with Sym% (k) and Sym% (), respectively, it follows that the map Sym< (i) induces a continuous
map
W : Uy — Sym% (k),
where Uy C Sym% (k) is the set of G-invariant elements of Sym?(B). The set U := ¢! (U) is an open
set of Sym% (k) containing z.

We now claim that, for each a € U, the class of a in ho(X)/n is equal to the class of z. Indeed, given

a € U, we can decompose the O-cycle a — z on X as

a—z=(a—1(a)+ (Y(a) - 2).
Since both 1(a) and z are in Ur and since the map is constant, the class of 1(a) — z in ho(X)/n is
trivial. It remains to show that the class of the O-cycle a — 9(a) is also trivial in ho(X)/n. To see this,
we note first that supp(a — v (a)) NY = (). Let Ny, denote the norm of &'/k for an intermediate field
k C k' C K. Then a —1(a) can be written as a sum of cycles on X of the form Ny /(b — s.(p(b))) for
some intermediate field £/, z € Z(K), and b € B, N X (k’). By Proposition 4.7| below, and by shrinking
the B,’s if necessary, it follows that the class of b— s, (p(b)) is trivial in ho(Xy/)/n for any b € B, N X (k).
Thus the class of a — v (a) is also trivial in ho(X)/n, as required. O

Proposition 4.7 (Wittenberg). Let k be a local field. Let p: X — V be a smooth proper morphism of
varieties over k, with V. smooth over k. Let x € X (k), let n € Zo be invertible in k, let Y C X be a
codimension 1 subvariety with x ¢ Y, and let F' C X be a codimension 1 subvariety with x € F. Assume
that both Y and F are étale over V and are disjoint, and that the fibers of X — V are geometrically
irreducible curves.

Since F is étale over V', the map F(k) — V (k) is a local isomorphism around x. Let s denote its
inverse in a neighbourhood of p(x).

If b denotes a rational point of X close enough to x, then the class of b — s(p(b)) in the 0-th Suslin
homology modulo n of X \'Y is independent of b.

Proof. First we note that we are free to base change along any smooth morphism W — V endowed with
a rational point of W lying above p(z). In particular, after base changing along the projection F' — V|
we may assume that F' — V admits a section and, by ignoring the other irreducible components of F',
that F' — V is an isomorphism, that is, that F' is a section of p. Let s: V' — X denote this section (i.e.,
F =s(V)).

Then, let us base change along p: X \Y — V itself. Let V' := X\ Y, X' := X xy V' and let us write
p': X' — V' for the projection onto the second factor. Let 2/ denote the rational point (z,z) of X'.
Let Y =Y xy V' and F/ = F xy V'. Let s': V! — X’ denote the base change of s: V — X and let
d: V' — X' denote the canonical section of p’, i.e., the diagonal. Now with p’: X’ — V', Y’ F’ and 2/,
we are in exactly the same situation as in the statement of the Proposition, except over V' rather than
over V. This is advantageous since now in order to prove the original statement, it is enough to prove
the following improved claim, where instead of looking at the difference between an arbitrary point b of
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the total space with the point s(p(b)) that lies in the same fibre of p and in the given section F', we now
look at the difference between two points lying in the same fibre but in two given sections. That is,

Claim: The class of d(v") — §'(v") in the 0-th Suslin homology modulo n of X' \'Y" is independent of
V', if v’ denotes a rational point of V' close enough to p'(a') = x.

We prove this claim as follows. We have the two sections s’ and d of p’ that coincide at p'(z’). We can
view their images s'(V') and d(V') as divisors in X’ that are disjoint from Y’. Hence these divisors have
classes in the group HZ (X', Y, uu,). This notation means cohomology of X' relative to Y', concretely
this means H2 (X', jiit,) where j denotes the inclusion of X’ \ Y’ in X’ and 7 is the extension by zero
functor; this relative cohomology group naturally fits into a long exact sequence

(4.2) v HAE(X Y ) — HE(X  pn) — HAE(Y! pn) — HY (XY n) — ..

Now we can pull back to the fibres above p/(2') = z. Write X/ and Y, for the fibres of X’ and Y’
above this point. We have the pull-back map
(4'3) Hgt(X,aY,nun) - Hgt(X;aYagvun)

and the difference between the classes of s'(V’) and of d(V”) lies in the kernel of (4.3)), since s’ and d
coincide at p'(z"). Now we argue just in the same way as one proves that evaluation of Brauer classes is
locally constant (see [Pool7, Proposition 8.2.9(a)]). Let R be henselisation of the local ring of V' at
p'(«’). The pull-back map factors as the composition of the maps

(4.4) HZ,(X" Y, pin) = Ho (X, Y, fin)

(45) Hezt(Xé%aY}/%Mn) — Hgt(XalcﬂYa;Mn)

The map is an isomorphism. Indeed, we can write the long exact sequence of relative cohomol-
ogy for the domain and for the target of . There are pull-back maps at each level, and by
proper base change two out of three of these maps are isomorphisms, thus by the five lemma, all are.
Hence our class [s'(V’) — d(V")] lies in the kernel of (4.4, and moreover it even lies in the kernel of the
map

(4.6) H(X' Y ) = H(Xiy, Vi, pin)

for some étale W — V' endowed with a rational point w above p/(z’). Finally, since W — V' is
étale, it induces a local isomorphism W (k) — V'(k) around w. By locally choosing an inverse of this
isomorphism, we conclude, as in the proof of [Pool7, Prop.8.2.9(a)], that the image of [s'(V') — d(V’)]
by the pull-back map

(4'7) He2t(X/7Y/7Mn) — HBQt(Xq/;’ﬂY;)/HMn)

vanishes for all rational points v" of V' close enough to p'(z’). In other words d(v') — s'(v') dies in the
target of ([4.7) for all such v’. Since for a smooth open curve such as X/, \ Y/, the 0-th Suslin homology
group modulo n injects into the the target of the map (4.7)), the claim is proved. O

5. EXTENDING LIANG’S STRATEGY TO TORSORS

5.1. Extending Liang’s strategy to torsors. In [Lial3| Theorem 3.2.1] Liang proves, under certain
geometric assumptions on the k-variety X, that, if the Brauer-Manin obstruction is the only one for
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weak approximation of K-rational points on X for any finite extension K/k, then the Brauer-Manin
obstruction is the only one for weak approximation of 0-cycles of degree 1 on X.

Recall that the unramified Brauer group Bry,(Y') = Br,,(k(Y)/k) of a smooth, geometrically integral
variety Y over k is the subgroup of Br(k(Y)) defined by the intersection of the images of the natural
maps Br(A) < Br(k(Y)) for all discrete valuation rings A with field of fractions k(Y") such that k C A.
The unramified Brauer group is a birational invariant that can be used even when no smooth, projective
model of Y is available. We note that when Y is proper, Br,,(Y) = Br(Y). For further details, see e.g.,
[CTS21, Chapter 6].

Theorem 5.1. Let X be a smooth, proper, geometrically integral variety over a number field k. Let
f:Y — X be an F-torsor for some linear algebraic group F over k and with Y geometrically integral.
Let d be any integer. Assume that

(i) for any finite extension K/k and any v € H (K, F), the quotient Br,,(YZ)/ Bro(YZ) is finite,
and there exists a finite extension K. of K so that for all finite extensions L of K linearly
disjoint from K. over K, the homomorphism induced by restriction

resy /i : Bro(Y)/ Bro(Yg) — Bro,(Y[)/ Bro(Y])

18 surjective;
(ii) for any finite extension L/k, we have that X1 (Ap)TEBrr = () if and only if X (L) # O (respectively,
if Xp(Ap)TeBrer £ 0 then weak approzimation holds for Xp).

Then f-descent with unramified Brauer obstruction is the only obstruction to the Hasse principle
(respectively, weak approzimation) for 0-cycles of degree d on X.

Proof. We give a proof for weak approximation in the case when f is not proper; the proofs for weak
approximation in the case when f is proper or for the Hasse principle are similar. Fix a positive integer
n and a finite subset S C Q. Fix a closed point & € X.

Let (2y)veq, € Z3(X Ak)f Brar Then, by definition, there exist a non-empty finite set S’ of finite exten-
sions of k, a non-empty finite set Tx C HL (K, F) for each K € ', a tuple of integers ((A;)rery ) kes:
satisfying 3 e [K 1 k] er, Ar = d, and adelic 0-cycles (2], )weq, € 257 (Y )B™ with

£ ad (((Zo)wear )reri ) Kes') = (20)veqy-

For each 7, we follow the proof of [Lial3, Theorem 3.2.1], with the following modifications. Liang
translates arithmetic information on a proper variety Z to arithmetic information on Z x P! in part
via the isomorphism of Br(Z x P!) = Br(Z). In our setting, Y7 need not be proper, so we use the
unramified Brauer group instead since it is a stably-birational invariant [CTS21, Cor. 6.2.10], hence
Bry,, (Y7 x PY) ~ Br,,, (YZ).

Without loss of generality, we can further enlarge the set S in the following way. For each K € S’
and 7 € Tk, since we are assuming that the quotient Bry,(Y7)/Bro(Y}%) is finite, we can fix a complete
finite set Mg ) C Bry, (Y ) of representatives for Bry,(Y)/Bro(Yz ). Hence, we can find a finite set
So, k- C Q and an integral model YV} of Y over Spec((’)K’SO’KYT) such that all the representatives in
R(k ) actually come from elements of Br()j ). Moreover, we recall that (Z],)weq, € ZOA "(Y{, ), so
that, by definition of adelic 0-cycles, there are only finitely many w € Qg (depending on the chosen
integral model for Y}7) for which Z], is not integral. Hence, by enlarging Sy i , further if necessary, we
can assume that all the places w € Q for which Z, is not integral (with respect to the model Y},) are
contained in Sy g . We then enlarge S by including all the (finitely many) places v € )} below the
(finitely many) places w € Sy k-, for each K € §" and 7 € T,. After enlarging S as above if needed, it
follows that, for any K € S’ and any 7 € Tk, if w € Qg is not above any place of S, then the evaluation
B(7;,) is actually in Br(Ok,,) = 0, for each 8 € R ;).
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Following the proof by Liang (see also [Lial3| Proposition 3.3.3] and the proof of [Lial3|, Proposition
3.4.1]) and using assumption (i), using the notion of generalised Hilbertian sets (see [Lial3| Definition
3.3.1]) for each K € S” and each 7 € Tk we can then construct a finite extension K, /K, linearly disjoint
from K over K, with

[K:: K|=A; (mod n-[k(Z): k])
and an adelic point (y,)weo,. € Y7 (Ag,)P™ with Y, Q' w T
Z, for all places w above S, where rg_ /f, le,w —Yg . In particular, by Proposition . for all

K. o /Ku (yl,) sufficiently close to

the places w € Q2 above a place in S, the 0- cycles >, 1eQe, ! w TK ot [ Koo (yr,) and Z7, have the same
image in hO(YTw)/n say

Ytk W) | = EL) 4 n,

w Qg w'|w
for some p7, € hO(Yfzw).
Now, let x7, := ff (y;,). Then (a7,). € X (Ag, ) &P By assumption (ii), there exists a

w

K;-rational point ™ € X (K,) such that (z7),s = x], for all w' above S.
Consider the global 0-cycle 2 := (3" .. sk, (&7)) + AnZ for some A € Z such that z € Z¢(X). Note
that such A exists by construction, since

YD sk @) =D Y Kk =) Y ALK k| =d (mod n- [k(Z) : k]).

KeS' 7eTk KeS' 7eTk KeS' 7eTk

We claim that the O-cycle z has the same image as z, in h°(X},)/n for all v € S. Indeed, for each
v € S, under the natural map Z4(X) — Z¢(Xy,) we send

Z 5 resy(2) 1= Z Z Z SKT’w/((iﬂ—)w’) + An Z (T)w € Zg(ka)

KeS' 1€Tk w' eQp, :w'|v WEQ(z) w|v

and, working in h%(X}, ), we have that

resy(2)] = |k X Crea, arlo 55w (@) + 70 [T oyufo @]
=[Sk Zr Swren o 55, (@)w0)]

Sk o Lt o 55 ()|

= [Zk X S, arto 55 (R, 0))]

Sk S Crete,arto K Tk 0,160 (05)))]

= Sk 5 St Lt a5 © ST y1c 03]

= Y e Cueanin($50 © T+ ([Suwrene i i, 00 i) )
=k Lo Lueaenlo(5, © 1)) + i)

=D K 2 2wegwlo(SKw © i)« ([Z0])

= [Tk 2 Cwennls (550, © £+ (35)]

= (2] (mod nh(Xp,),
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where in the fifth equality we have used the commutative diagram

TK /K
Y7 T MW YZ
K ! % K’w

T, W

Tk, Ik
~ SK

Xk, — Xk,

;W

S S
K‘r,w/ Kw

~ ~

Xk _ ka.

v

and where in the seventh and tenth equalities we have used the fact that pushforward maps of sets of
0-cycles induce maps of Suslin homology groups. (Il

Remark 5.2. In Theorem we consider only one torsor f: Y — X at a time. It is a much harder
problem to deal with multiple torsors simultaneously (as it could happen when trying to compute, for
example, the étale-Brauer obstruction), since the combinatorial compatibilities between the degrees of
the fields constructed in the proof of Theorem [5.1] become much more difficult to enforce and check — at
least, in full generality.

In the case that X has a closed point with degree a power of a prime p, we may relax the assumptions
of Theorem [5.11

Proposition 5.3. Let X be a smooth, proper, geometrically integral variety over a number field k and
suppose there exists a closed point & of X of degree [k(Z) : k] = p", for some prime p. Let f: Y — X
be an F-torsor for a linear algebraic group F over k and Y geometrically integral. Let d be an integer
coprime to p. Assume that
(i) for any finite extension K/k and any T € H' (K, F), the quotient Br,,(Y)/ Bro(YZ) is finite,
and there exists a finite extension K. of K so that for all finite extensions L of K linearly
disjoint from K. over K and with ged([L : K],p) = 1, the homomorphism induced by restriction

resy K Bry, (Yi)/ Bro(Yg) — Bru,(Y7)/ Bro(Y7)
18 surjective.
(i3) for any finite extension L/k of degree coprime to p, we have that Xp(Ar)LB™r = () if and only
if X(L) # 0.
Then Z§(Ag) Bror £ 0 = ZH(X) # 0.

Proof. Let (2y)y € Z§(Xa, )/ P . Then there exist a non-empty finite set S of field extensions of k,
non-empty finite sets Tx C HL (K, F) for each K € S, and a tuple ((A;),ery ) kes of integers satisfying
Y oKes 2orery K ¢ kJAr = d, and O-cycles (27,)weay € Z5 (YATK)B“" for all 7 € Tk and all K € S such

that
oot (((GDwenn)ren, ) ) = oo

Since Y A;[K : k] = d and ged(d,p) = 1, there exists some 7 such that ged(A;[K : k],p) =1
and hence gcd(A;,p) = 1. Under assumption (i), by applying a similar strategy as in the proof
of |[Lial3, Theorem 3.2.1] to the corresponding torsor Y7 we obtain an extension L,/K of degree
[Lr : K] = A; mod p and adelic point of (y,)w € Y] (Ar, )Br(YE) | OQur assumption (i) guarantees
that (yg,)w € Y7 (Ap, )P (i) and thus that f7((y))w) € Xr.(Ar, ) B Since L,/k has degree
[Lr : k] = [L; : K][K : k] which is coprime to p, our assumption (i7) yields a rational point = € X (L;),
which can be viewed as a closed point on X of degree coprime to p. Hence, by taking a suitable linear
combination of x and Z, we get a 0-cycle of degree 1 on X. (I
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Remark 5.4. If in the statement of Proposition |[5.3| we consider weak approximation instead, it is
unlikely that the above strategy of proof extends to this setting.

Remark 5.5. See Theorem [6.6] for a result which uses similar ideas as those in the proof of Proposition
in the context of (twisted) Kummer varieties.

6. SOME APPLICATIONS

6.1. Enriques surfaces. In this section, we study the arithmetic behaviour of 0-cycles on Enriques
surfaces using our newly defined obstruction sets and some recent results on K3 surfaces. There is
indeed a well-known relationship between Enriques surfaces and K3 surfaces: any Enriques surface X
over a number field £ can be realised as the quotient of a K3 surface Y by a fixed-point-free involution
(see [Bea96, Prop II1.17]). In other words, for any Enriques surface Y over k, we have a Z/2Z-torsor
f: X =Y with X a K3 surface over k.

Conjecturally, the qualitative arithmetic behaviour of rational points on K3 surfaces is completely
determined by the Brauer-Manin obstruction.

Conjecture 6.1 (Skorobogatov, [Sko09b]). The Brauer-Manin obstruction is the only obstruction to
the Hasse principle and weak approximation of rational points on K8 surfaces over number fields.

Some recent evidence towards Conjecture includes [CTSSD98|, [SSDO05|, [IS15], [HS16]. In
[Ler21], Ieronymou used Liang’s strategy to prove, conditionally on Skorobogatov’s conjecture, that
the Brauer-Manin obstruction also completely determines the qualitative arithmetic of 0-cycles on K3
surfaces.

Theorem 6.2 ([ler21, Theorem 1.2]). Let Y be a K3 surface over a number field k and fix an integer d.
Suppose that Conjecture holds. Then, for any positive integer n, if (zy), € Z(‘)i(YAk)Br then there
exists a global 0-cycle z, € Z4(Y) such that z, and z, have the same image in CHo(Yy,)/n for all
v € Q.

By using leronymou’s result and exploiting the K3 coverings of Enriques surfaces, we are able to
study the arithmetic behaviour of 0-cycles on Enriques surfaces.

Theorem 6.3. Let X be an Enriques surface over a number field k and let f : Y — X be a K3 covering
of X, i.e. a Z/2Z-torsor over X with' Y a K3 surface. Assume that Conjecture is true. Let d € Z.
Then, for any positive integer n, if (zy), € Zél(XAk)f’Br then there exists a global 0-cycle z, € Z(X)
such that z, and (z,), have the same image in CHo(Xy,)/n for all v € Q.

Proof. Fix a positive integer n. If (z,) € Z§(Xa)7B", then by definition there exist a non-empty finite
set S of field extensions of k, non-empty finite sets Tx C HY (K, Z/27Z) for each K € S, and a tuple

((Ar)rery ) kes of integers satisfying D e > o er, [K 1 k]A; = d, and 0-cycles (27,)weqy € ZOAT(YATK)BY
for all 7 € T, and all K € S such that

f, ad ((((Z;)wEQK)TGTK>K€S> = (20)w-

Under the assumption that Conjecture [6.1] is true, from Theorem we deduce that there exist
global O-cycles 2z, € Z57 (V) such that z, and (2] )weq, have the same image in CHj (Y, )/n for all
w € Qg, forall 7 € Tk and all K € 5.

Let z :=f, (((ZT)TETK)KGS)' By Lemma z € Z3(X). Moreover, it is not hard to see that z and

z, must have the same image in CHo(X},)/n for all v € Q. Indeed, for all w € Qg, for all 7 € Tk and
K € S’ working at the level of Chow groups we have

[20] = [resw(2)] + 1A,
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for some A\, € CHo(Yy, ), where res,(z;) is the image of z; under the natural map Z5T(YE) —
ZOAT(YIQUJ). Then, using the fact that proper pushforward maps at the level of sets of O-cycles induce
maps of Chow groups, for every v € £, we have

[20] = X Kes ZTGTK ZweQK;w|v(5K o fi)« ([z0])
= EKeS ZTETK EwEQK:wh)(sK o fi)x ([resy(2r)] + nAj,)
= [resy(2)] + X ges Dorery ZwGQK:w|U(SK o fi)x (RAY,)
= [resy(2)] + 12 kes 2rery Zwepn (5K © i)« (AL)

where res,(z) is the image of z under the natural map Z¢(X) — Z§(X,). Since

Y>> Y (swofk)s(CHo(Yg,)) C CHo(Xy,),

KeS 7€Tk weQk wlv

we are done. O

6.2. (Twisted) Kummer varieties as torsors. Let A be an abelian variety over a number field &k
of dimension > 2. Let o := [T — Speck] € HL (k, A[2]). Under the natural morphism H} (k, A[2]) —
HZ (k, A), we have that o gives rise to a 2-covering p: V — A, where V has the structure of a k-torsor
under A of period dividing 2. The involution [—1] : A — A, fixing A[2], induces an involution ¢ : V — V
ﬁxmg T =p~1(04). Let V — V be the blow-up of V at T. Then the involution ¢ induces an involution

: V — V fixing the exceptional divisors of the blow-up. The quotient V/ i is called the (twisted)
Kummer variety associated to A and o. In what follows, we sometimes omit the references to A and o
and just talk about (twisted) Kummer varieties.

Lemma 6.4. Let Y be a (twisted) Kummer variety over a number field k. Then'Y has a 0-cycle of
degree a power of 2.

Proof. Since Y is a (twisted) Kummer variety, it admits a double cover by a smooth, proper variety Z
which is birational to a torsor V' under an abelian variety of dimension g of period P(V') dividing 2. If
I(V) denotes the index of V, that is, the ged of the degrees of all closed points on V', then the following
divisibility relation between the period and index is well-known:

P(V) [ I(V) | P(V)*
In particular, (V) must be a power of 2. Since, for k& a number field, the index is a birational invariant
of smooth varieties, it follows that (V) = I(Z). Hence, by definition of the index, Z has a 0-cycle of
degree I(Z), a power of 2. By pushing forward this 0-cycle from Z to Y, we obtain a 0-cycle on Y of
degree a power of 2, as required. O

Given that there is a close relationship between (twisted) Kummer varieties and k-torsors under
abelian varieties, and since, conditionally on the finiteness of the relevant Tate-Shafarevich group, the
(algebraic) Brauer-Manin obstruction is the only one for the existence of rational points on k-torsors
under abelian varieties (see e.g., [Man71,|Cre20]), it is natural to ask the following question (and to
possibly expect a positive answer).

Question 6.5. Let X be a (twisted) Kummer variety over a number field k. Is it true that, for any
finite extension L/k of odd degree, X (Ar)P" # 0 implies X (L) # 07

For some evidence towards a positive answer to Question see for example [SSDO5|, [HS16], and
[Har19)].

Theorem 6.6. Let X be a smooth, proper, geometrically integral variety over a number field k. Let
f:Y — X be a torsor under some linear algebraic group F over k, whereY is a (twisted) Kummer variety
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over k. Let d € Z be odd. Assume that Question has a positive answer. Then Z3(Xy, )2 £
implies Z$(X) # 0.

Proof. Let (2,), € Z3(Xa, )PP 2. Then, by definition, there exist a non-empty finite set S of field
extensions of k, non-empty finite sets Tx C HL (K, F) for each K € S, and a tuple ((A;)re7y ) Kkes of
integers satisfying > e gD er, [K : kJAr = d, and 0-cycles (z7,)weqy, € ZOAT (YATK)BF{Q} for all 7 € Tk

and all K € S such that
f*,ad ((((Z;)wGQK)TETK)KeS) = (Zv)v.

Since d is odd, it follows that there exists some K € S and some 7 € T, such that ged([K : k]A.,2) = 1.
By the proof of [Lial3, Theorem 3.2.1], we can construct a finite extension K,/K with [K; : K| =
A; (mod 2) such that Yy (A, )B*OVEH2 £ (. But, by construction, [K, : K] is odd. Hence, by
[BN21, Lemma 7.1] we know that actually Y (Ag, B2} = Yi (Ak )BT(YIET){Q} Since Yz _is a
(twisted) Kummer variety, [CV18, Theorem 5.10] then yields that Y7 (Ax Br(Y&) £ 9. By assumptlon
this implies that there exists some rational point y € Y (K), which can be v1ewed as a closed point
of degree [K, : K| on Y. Since Y7 is a (twisted) Kummer variety, we know by Lemma [6.4] that Y7
has a global 0-cycle of degree a power of 2. Hence, by Bézout’s theorem, there exists a global 0-cycle
Z; € ZH(YE) and thus a global O-cycle z € Z([)K:k] (X). If #5S =1, then [K : k]|d and we are done. If
#5 > 1, then, since 3 g > rer,, [K': kE|A = d, it follows that

ged ([K : K], [K' < K] for K' € S — {K}) | d
In particular, since [K : k] is odd, it follows that
(6.1) ged ([K : k], 2% [K' 2 k] for K' € S —{K}) | d

for any integers ty > 0. For any K’ € S — {K}, fix some 7/ € Txs. Then, by considering the (twisted)
Kummer variety YE, and, by Lemma a global 0-cycle ' of degree a power of 2 on YI?,, we get that
the pushforward ( f,z,/)*(y’ ) is a global 0-cycle of degree a power of 2 on X/, and thus a global 0-cycle
2’ of degree 2'x'[K' : k] on X, for some tgs > 0. Hence, by , we can take an appropriate linear
combination of the 0-cycles 2’ (for each K’ € S — {K}) and z we obtain a 0-cycle of degree d on X, as
required. O

Remark 6.7. By using [BN21], one can also consider the more general case of torsors under arbitrary
finite products of (twisted) Kummer varieties, K3 surfaces, and geometrically rationally connected
varieties over some number field.

Remark 6.8. As already mentioned in the introduction, the recent preprint [ler22| by Ieronymou
should remove some of the conditions in Theorem namely we can get a statement for any d € Z and
for the full Brauer groups, with a proof similar to that of Theorem We have preferred to leave the
statement of Theorem [6.6] in its current form as its proof could potentially be used in other contexts
where one has only limited information about the arithmetic of rational points (e.g. when one only
knows local-to-global principles for rational points with 2-primary Brauer groups).

6.3. Universal torsors and torsors under tori. Recall that if X is a variety over kK and g: Y — X
is a G-torsor over X for some linear algebraic group G over k of multiplicative type, then the type of
the torsor g : Y — X is the map
A:G — PicX

which associates to any character y € G = G (k:) the class of the pushforward x«(Y) = Xin HY(X,G,,) =
Pic X (see [Sko01, Lemma 2.3.1]), where G := Homy,. groups(G, Gm) = G(k) is the module of characters
of G. If, moreover, Pic X is ﬁnltely generated as a Z-module, then we say that g : Y — X is a universal
torsor if the type map A : G — Pic X is an isomorphism of Gal(k/k)-modules. One useful feature of
universal torsors is that they are really defined geometrically, implying that if g : W — X is a universal
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torsor for X under some linear algebraic group G over k, then gx : W — X is also a universal torsor
for X (under Gg) for any finite extension K/k. Universal torsors satisfy many nice properties, in the
context of rational points. For example, we have the following.

Theorem 6.9 ([Sko01, Theorem 6.1.2]). Let X be a variety over k with k[X]* =k~ and Pic X
finitely generated as a Z-module. Assume that g : W — X is a universal torsor for X. Then
X(AR)7 = X (Ag)P.

In this section, we leverage some of our knowledge of universal torsors in the context of rational
points to deduce some information in the context of O-cycles.

Theorem 6.10. Let X be a smooth, proper, geometrically integral variety over k with Pic X finitely
generated as a Z-module. Suppose that a universal torsor g : W — X under some group G of
multiplicative type over k exists. Then, for any integer d € Z, for any positive integer n, and for any
finite subset S C Q4. of places of k, we have that

1) if (z0)y € Z4(X 4, )9, then there exists some (uy)y € Z3H(Xa, )2 such that z, and w, have the
0 k 0 k
same image in CHy(Xy,)/n for allv e S’;
(2) if, moreover, Br1(X)/Bro(X) is finite, then (z,), € Z&(Xy, )Pt implies that there evists some
Up)y € Z4(Xp, )9 such that z, and u, have the same image in CHy(Xy,)/n for allv € S'.
0 k v

Proof. (1) Let (2y), € Z&(Xa,)?. Then, by definition, there exist a non-empty finite set S of field
extensions of k, non-empty finite sets Tx C HL (K, G) for each K € S, and a tuple ((A;)rery ) Kkes of
integers satisfying > e gD eq, [K 1 kJAr = d, and O-cycles (2], )veay € ZDAT(WgK) for all 7 € T and

all K € S such that
8ot (((CDIvenidren,) ) = oo

For each 7 € Tk (for each K € S), we can fix a closed point y, € W[, with F, := K(y,) and degree
say 0y, = [F; : K|. Then, arguing as in [Lial3, Theorem 3.2.1], we can construct an extension L,/K of
degree

[L,: K] =A; (mod ndy, ),
say [L, : K] = A; 4+ Amnd,, for some integer A\;, and an adelic point (my)weq, € WT(AL,) with
ZwEQL wlt "L /Ky (my) sufficiently close to 27, for all the places v € Qg above the places in 5,
where kW[ _, — WK is the natural map. By Prop031t10n H ZWEQL wlo! TLrw/K, ,(my)
and 27, also have the same image in ho(WK ))/n.

Let () wea, = (97 (mw))wen, - Then (24)weq, € X(Ar,)%-. But g, : Wi, — Xy, is
again a universal torsor (under G1_). Hence, Theorem m yields that (z & ))weg L. € X(A )P (Xes),

Similarly, (37 )wrear, = (05 (- )w)weap, € X (Ap,)B1Er),
Consider the adelic 0-cycle on X whose v-adic component is given by

Uy = Z Z Z Z SLT,w/kv(xg)) _ATn Z Tw//k”( uj-/)) ’

KeSTeTKk v'eQi ' |v \weQy wlv w' €Qp w'|v’

where sy k.t Xp,, = Xk, and sp_ .t Xp — Xj, are the natural maps, with degree

deg(uv) = Yges 2irery Zv/eQK;u'|v <Zw€QLT:w|'L)/[(LT>’UJ ko] = Arn Zw/eQFT:w/|v/[(FT)w’ : kv])
ZKES ZTETK ([LT : K] - )\’Tn[FT : K]) ZU'EQK:v/|v[(K)v’ : ky]
= Y keslK 1 K| ZTGTK ([Lr : K] = Amn[F; : K))
= ZKeS[K : k’} ZTeTK Ar
= d.
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We claim that (uy), € Z¢(Xa, ). Indeed, for any o € Bri(X),

)
D ey 2UKeES DareTy 2’ eQcv v <Z”~UGQL w\v’ v, (CoreS(LT)w/kv ( (xw )))
Ao S, %0 (corese, i (2 (37)))
= (Eveﬂk > Kes ZTETK ZU’EQK:v/lv ZWGQLTWW Ve (CoreS(LT)w/k“ ( ( ))))
—Arn (Zv D KeS 2areTy Zv’eQK:v’lv Zw’eQFT /ot TV <C0reS(F Jur /v ( T T/
Now,
Yot Sices Srete Dwennts Suea, wiw %0 (coresie . (o (a17)))
= D vy 2UKES QareTy 2l eQpeiv! v 2awey, ol 1WVw (a (xg)

= D.Kes Z’TETK ZWEQLT Ve (a ($g)>)

ZKGS ZTETK 0
0,

where in the first equality we have used the commutative diagram
Br(Spec((L,)w)) — Q/Z

l COl"eS(LT)w/kv l =
Br(Spec(k,)) % Q/Z

and in third equality we have used the fact that (27 )weq, € X(Ar )B1(XL:) Similarly, one can show
w L+ T

e Z Z Z Z Z inv, (cores(FT)w,/kv <a <5:1(UT,)>>> =0.

veEQ KESTETK v'eQv'|[v w eQp, w!|v/
Hence, (uy)y € Z&(Xa, )P, as required.

Finally, we remark that, since Z’LUGQLT?wl'U/ TLrw/K, (M) and 27, have the same image in hg(W}(U,)/n
forall 7 € Tk, all K € S, and all places v’ above the places v € S’, and by the compatibility of Suslin’s ho-
mology with pushforward morphisms, it follows that 3 e g D rere 2 ovequ o 2owes, wle SLrw /by (a;g))
and z, have the same image in ho(Xg,)/n for all v € S’, and thus that u, and z, also have the same
image in ho(Xg,)/n for all v € S’. Since X is proper, we note that ho(Xy,) = CHo(Xk, ).

(2) The assumption that Br; X/Brg X is finite can only be true when Pic X is torsion-free: since
H3.(k, k™) = 0 for any number field k and k" [X] = % by our assumptions on X, by the long exact
sequence coming from the Hochschild-Serre spectral sequence

Ey® = Hiy (k, H (X, Gm)) = HE (X, G)
we know that
Br; X/ Brg X = HY (k, Pic X),
and, by Kummer theory, H), (k, Pic X) is infinite as soon as Pic X has non-trivial torsion. Let K/k be
a finite Galois extension such that Gal(k/K) acts trivially on Pic X. Then, following for example the

proof of [Lial3| Prop 3.1.1], we have that, for any finite extension [/k linearly disjoint from K over k,
the natural restriction map

resy /i Bry X/ BI‘O X — BI‘1(X[>/BI‘0(XZ)

is an isomorphism.
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Let (2y)y € Z&(Xa,)B". We fix a closed point € X of degree, say, d, := [k(z) : k]. In particular,
((x)w)wegk(z) € X(Ak(z))B“(XW)). Since gi(z) : Wi(e) = Xi(o) is still a universal torsor, Theorem
yields (@)u)uwett € X (Axe) ™.

Following [Lial3], we can construct a finite extension [/k, linearly disjoint from K and k(x) over
k, such that [l : k] = d (mod ndy), say [l : k] = d + And, for some X\ € Z, and an adelic point
(Fur)wen, € X(A)B1D) = X(A)% with 2w e v Sy [y (Tw) sufficiently close (in the sense of
[Lial3]) to z, for each place v € S’, where St /ke © X1, — XKk, is the natural map. Note that
X(Al)Brl(Xl) = X (A;)% by the fact that g; : W; — X is still a universal torsor together with Theorem
0.9

Consider the adelic 0-cycle on X whose v-adic component is given by

Uy 1= Z Sl ke (Tw') — An Z k(@) w ko (T)w)

w! €Qpw’ |v WEL (2):w|v

and has degree
deg(zv) = D urequplle ko] = An Zwer(z); [k(z)w : Kyl

= [l: k] — Mn[k(x) : k]

= d.
We claim that (u,) € Z4(X4,)9. Indeed, take S := {l,k(x)} (noticing that [ and k(z) are linearly
disjoint over k by construction); take Tj := {7} C H'(I,G) and Ty, := {0} C H'(k(z),G), where 7 is
any twist such that there exists some (9y ) € W7 (A;) above (Z,)y, and o is any twist such that there
exists some (Yo )w € W (Ag(y)) above ((#)w)w; take Az =1 and A, = —An. Then (Ju)w € Z§ (WL)
and (—A\nyy)w € Z&A(ng@)), with

w|v

8uad (Fu)uwrs (FAngw)) = [ D sim @) =2 D sp@um (@) | = (w)

w' €Qpw’ v WEL (2):w|v

and
Al k] +Ap-0p=[l:k—And, =d,
as required. Finally, it is easy to check that the u, and z, have the same image in CHo (X}, )/n for all
ves. O

Finally, we consider torsors under tori. In the rational points setting, Harpaz and Wittenberg have
proved the following nice result.

Theorem 6.11 (|[HW20, Théoreme 2.1]). Let X be a smooth, geometrically integral variety over k. Let
f:Y — X be a torsor under a k-torus T'. Let A C Br X be the inverse image of Bry,,(Y) C BrY under
f*:BrX — BrY. Then
Xantc |J o roomntn).
oc€H (k,T)

A very similar proof to that of Theorem (2), together with Theorem yields the following
immediate statement for O-cycles in the spirit of Theorem [6.11] albeit with the usual restrictions on the
Brauer groups.

Theorem 6.12. Let X be a smooth, proper, geometrically integral variety over k. Let f 1Y — X be
a torsor under a k-torus T. Assume that Br X/ Bro X is finite and that there is some finite extension
F/k such that res;;, : BrX/Bro X — Br,,(X;)/Bro(X;) is surjective for all finite extensions l/k
linearly disjoint from F over k. Then, for any integer d € Z, for any positive integer n, and for any
finite subset S" C Q. of places of k, we have that (z,)y € Z&(Xa, )P implies that there exists some
(up)y € Z(Xp, ) B such that z, and u, have the same image in CHo(Xy,)/n for allv € S'.
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